Advertisement

Computational Concepts for Kinetic Instability Problems

  • W. B. Kratzig
  • P. Nawrotzki
Part of the International Centre for Mechanical Sciences book series (CISM, volume 342)

Abstract

In order to decide upon the stability of a certain time-dependent response \( \bar X = \left\{ {\bar V,\bar V} \right\} \) we now continue with section 1.5.

Keywords

Instability Region Cylindrical Panel Perturbation Vector Static Equilibrium State Nonconservative System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Chapter 5

  1. 5.1
    Müller, P.C.: Stabilität und Matrizen. Springer-Verlag, Berlin 1977.MATHGoogle Scholar
  2. 5.2
    Krätzig, W.B., Li, L.-Y.: On rigorous stability conditions for dynamic quasi-bifurcations. Int. J. Solids Struct. 29 (1992) 1, 97–104.CrossRefGoogle Scholar
  3. 5.3
    Krätzig, W.B., Quian, Y.-y.: On stability conditions for nonlinear static and dynamic buckling responses. In: Nonlinear Computational Mechanics, P. Wriggers, W. Wagner (eds.), Springer-Verlag, Berlin 1991.Google Scholar
  4. 5.4
    Meirowitch, L.: Methods of Analytical Dynamics. McGraw Hill, New York 1970.Google Scholar
  5. 5.5
    Hagedorn, P.: Nichtlineare Schwingungen. Akademische Verlagsgesellschaft, Wiesbaden 1978.MATHGoogle Scholar
  6. 5.6
    Bolotin, V.V.: The dynamic stability of elastic systems. Holden-Day, San Francisco 1964.MATHGoogle Scholar
  7. 5.7
    Basar, Y., Eller, C., Krätzig, W.B.: Finite element procedures for parametric resonance phenomena of arbitrary elastic shell structures. Computational Mechanics, 2 (1987), 89–98.CrossRefMATHGoogle Scholar
  8. 5.8
    Eller, C.: Lineare und nichtlineare Stabilitätsanalyse periodisch erregter, viskoelastischer Strukturen. Techn. Report No. 88–2, Inst. for Struct. Eng., Ruhr-University, Bochum 1988.Google Scholar
  9. 5.9
    Basar, Y., Eller, C., Krätzig, W.B.: Finite element procedures for the nonlinear stability analysis of arbitrary shell structures. Computational Mechanics 6 (1990), 157–166.CrossRefMATHGoogle Scholar
  10. 5.10
    Eller, C., Krätzig, W.B.: Numerische Stabilitätsanalyse linear und nichtlinear deformierbarer, parametererregter Schalentragwerke. Ing.-Archiv 59 (1989), 345–356.CrossRefMATHGoogle Scholar
  11. 5.11
    Mathies, H.G., Nath, C.: Dynamische Stabilität nichtlinearer Systeme mit periodischer Erregung, dargestellt am Beispiel der großen Windanlage. ZAMM 64 (1984), T67 - T69.Google Scholar
  12. 5.12
    Ziegler, H.: Principles of Structural Stability. Birkhiiuser Verlag, Basel 1977.CrossRefMATHGoogle Scholar
  13. 5.13
    Krätzig, W.B., Eller, C.: Numerical Algorithms for Nonlinear Unstable Dynamic Shell Responses. Computers & Structures, 44 (1992) No. 1/2, 263–271.CrossRefGoogle Scholar
  14. 5.14
    Kleiber, M., Kotula, W., Saran, M.: Dynamic quasi-bifurcations in structures subjected to step-loadings. In: Finite Element Methods for Nonlinear Problems, K. J. Bathe et al. (eds.), 529–538. Springer-Verlag Berlin 1986.Google Scholar
  15. 5.15
    Quante, R.: Dynamic Stability Analysis of Elasto-viscoplastic Shell Structures under Time-dependent Loading. Techn. Report No. 92–2, Inst. f. Structural Engineering, Ruhr-University, Bochum 1992.Google Scholar
  16. 5.16
    Willems, J.L.: Stability Theory of Dynamical Systems. Th. Nelson & Sons Ltd., London 1970.Google Scholar
  17. 5.17
    Quante, R., Krätzig, W.B.: Dynamic Stability of Elasto-plastic Shell Structures. In: Computational Plasticity, J. Owen et al. (eds.), 1811–1822, Pineridge Press, Swansea 1992.Google Scholar
  18. 5.18
    Hopf, E.: Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. Berichte d. Math.-Phys. Klasse, Sächs. Akad. d. Wissensch., Leipzig, 94 (1942), 1–22.Google Scholar
  19. 5.
    Zurmühl, R., Falk, S.: Matrizen und ihre Anwendungen. Vol. 1/ Vol. 2, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1984/1986.Google Scholar
  20. 5.20
    Leipholz, H.: Stabilitätstheorie. B.G. Teubner, Stuttgart, 1968.Google Scholar
  21. 5.21
    Huseyin, K.: Vibrations and Stability of Multiple Parameter Systems. Noordhoff International Publishing, Alphen aan den Rijn, 1978.MATHGoogle Scholar
  22. 5.22
    Basar, Y., Krätzig, W.B., Nawrotzki, P.: Nonlinear Dynamic Stability Analysis of Shell Structures under Nonconservative Loads. Engineering Systems Design and Analysis, Vol. 5, ASME 1992, 143–148.Google Scholar
  23. 5.23
    Basar, Y., Ding, Y.: Finite-rotation Elements for the Non-linear Analysis of Thin Shell Structures. Int. J. Solids Structures Vol. 26 (1990), No. 1, 83–97.CrossRefMATHGoogle Scholar
  24. 5.24
    Krätzig, W.B., Nawrotzki, P.: Dynamische Stabilitätsanalyse bewegungsabhängig belasteter, mechanischer Strukturen. ZAMM 73 (1993) 4, T199 - T202.MATHGoogle Scholar
  25. 5.25
    Argyris, J., Mlejnek, H.-P.: Die Methode der Finiten Elemente; Bd. 3: Einführung in die Dynamik. Vieweg, Braunschweig, 1988.Google Scholar
  26. 5.26
    Schweizerhof, K.: Nichtlineare Berechnung von Tragwerken unter verformungsabhängiger Belastung mit finiten Elementen. Bericht Nr. 82–2, Institut für Baustatik, Universität Stuttgart, 1982.Google Scholar
  27. 5.27
    Schräpel, H.-D.: Zur Äquivalenz der klassischen Stabilitätskriterien der Elastomechanik bei nichtkonservativen Kräften. Ingenieur-Archiv 60 (1989), 83–91.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • W. B. Kratzig
    • 1
  • P. Nawrotzki
    • 1
  1. 1.Ruhr-University BochumBochumGermany

Personalised recommendations