• P. Wriggers
  • S. Reese
Part of the International Centre for Mechanical Sciences book series (CISM, volume 342)


Thermoelastic stability of heated trusses is of technical interest for the design of e.g. space structures. These space structures are in general subjected to high temperature gradients due to intense heating by the sun and cooling in the shadow. When the deformations of such structures are constrained, then buckling may occur which leads to local or global instabilities associated with large undesirable deflections.


Singular Point Material Parameter Bifurcation Point Reference Configuration Stability Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. T. Belytschko, J. S.-.I. Ong, W. K. Liu, J. M. Kennedy, Hourglass control in linear and nonlinear problems, Comp. Meth. Appl. Mech. Eng. 43 (1984), 251–276CrossRefMATHGoogle Scholar
  2. B. A. Boley, J. H. Weiner, Theory of thermal stresses, Wiley, New York, 1960MATHGoogle Scholar
  3. R. de Borst, P. P.J.M. Peeters, Analysis of concrete structures under thermal loading, Comput. Meths. Appl. Mech. Engrg. 77 (1989) 293–310CrossRefMATHGoogle Scholar
  4. J. P. Carter, J. R. Booker, Finite element analysis of coupled thermoelasticity, Coin-put. & Structures 31 (1989) 73–80CrossRefGoogle Scholar
  5. S. Cescotto, G. Fonder, A finite element approach for large strains of nearly incompressible rubber-lide materials, Int. J. of Solids Si Struct. 15 (1979) 589–605CrossRefMATHGoogle Scholar
  6. P. Chadwick, R. W. Ogden, On the definition of elastic moduli, Arch. Rat. Mech. Anal. 44 (1971) 41–53MATHMathSciNetGoogle Scholar
  7. P. Chadwick, R. W. Ogden, A theorem of tensor calculus and its applications to isotropic elasticity, Arch. Rat. Mech. Anal. 44 (1971) 54–68MATHMathSciNetGoogle Scholar
  8. T. F. Chan, Deflation techniques and block-elimination algorithms for solving bordered singular systems, SIAM J. Sci. Stat. Comput. 5 (1984) 121–134CrossRefMATHGoogle Scholar
  9. P. G. Ciarlet, Mathematical elasticity, Volume I, North-Holland, Amsterdam, 1988MATHGoogle Scholar
  10. M. A. Crisfield, A fast incremental/iterative solution procedure that handles snap through, Comput. & Structures 13 (1981) 55–62CrossRefMATHGoogle Scholar
  11. K. Dorninger, F. G. Rammerstorfer, A layered composite shell element for elastic and thermoelastic stress and stability analysis at large deformations, Internat..I. Numer. Meths. Engrg. 30 (1990) 291–306CrossRefGoogle Scholar
  12. G. Duffett, Some aspects of the numerical solution of equilibrium problems in finite elasticity, Ph.D. Dissertation, University of Cape Town, 1985Google Scholar
  13. G. Duffett, B. D. Reddy, The analysis of incompressible hyperelastic bodies by the finite element method, Comp. Meth. Appl. Mech. Engng. 41 (1983) 105–120CrossRefMATHMathSciNetGoogle Scholar
  14. G. Engeln-Müllges, F. Reuter, Formelsammlung zur numerischen Mathematik mit FORTRAN-Programmen, BI Wissenschaftsverlag, 1990Google Scholar
  15. B. E. Gatewood, Thermal stresses, McGraw-Hill, New York, 1957MATHGoogle Scholar
  16. F. Gruttmann, R. L. Taylor, Theory and finite element formulation of rubberlike membrane shells using principal stretches, Internat. J. Numer. Meths. Engrg. 35 (1992), 1111–1126CrossRefMATHGoogle Scholar
  17. D. M. Haughton, R. W. Ogden, Bifurcation of inflated circular cylinders of elastic material under axial loading–I. membrane theory for thin-walled tubes, J. Mech. Phys. Solids 27 (1979), 179–212CrossRefMATHMathSciNetGoogle Scholar
  18. D. M. Haughton, R. W. Ogden, Bifurcation of inflated circular cylinders of elastic material under axial loading–II. exact theory for thick-walled tubes, J. Mech. Phys. Solids 27 (1979), 489–512CrossRefMATHMathSciNetGoogle Scholar
  19. R. Hill, On uniqueness and stability in the theory of finite elastic strain, J. of the Mech. and Phys. 5 (1957), 229–241CrossRefMATHGoogle Scholar
  20. R. Hill, Uniqueness in general boundary-value problems for elastic or inelastic solids, J. of the Mech. and Phys. 9 (1961), 114–130CrossRefMATHGoogle Scholar
  21. R. Hill, Uniqueness criteria and extremum principles in self-adjoint problems of continuum mechanics, J. of the Mech. and Phys. 10 (1962), 185–194CrossRefMATHGoogle Scholar
  22. H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in P. Rabinowitz (ed.): Application of bifurcation theory, Academic Press, New York, 1977, 359–384Google Scholar
  23. R. S. Martin, J. H. Wilkinson, Similarity reduction of a general matrix to Hessenberg form, Numerische Mathematik 12 (1968) 349–368CrossRefMATHMathSciNetGoogle Scholar
  24. C. Miehe, Zur numerischen Behandlung thermomechanischer Prozesse, Bericht-Nr. F88/6, Institut für Baumechanik und Numerische Mechanik, Universität Hannover, 1988Google Scholar
  25. T. H. Miller, A finite element study of instabilities in rubber elasticity, Ph.D. Dissertation, The University of Texas at Austin, Texas, 1982Google Scholar
  26. I. Müller, On the stability of a biaxially-loaded rubber sheet, Proceedings 5. Int. Conference on Waves and Stability in Continuum Mediums, 1989, World Scientific, 1992Google Scholar
  27. A. Needleman, Inflation of spherical rubber balloons, Int. J. Solids Structures 13 (1977) 409–421CrossRefGoogle Scholar
  28. J. L. Nowinski, Theory of thermoelasticity with applications, Sijthoff andNoordhoff, Alphen aan den Rijn, The Netherlands, 1978CrossRefGoogle Scholar
  29. R. W. Ogden, Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. A. 326 (1972) 565–584CrossRefMATHGoogle Scholar
  30. R. W. Ogden, Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. A. 328 (1972) 567–583CrossRefMATHGoogle Scholar
  31. R. W. Ogden, Non-linear elastic deformations, Ellis Horwood, Chichester, 1984Google Scholar
  32. R. W. Ogden, Local and global bifurcation phenomena in plane-strain finite elasticity, Int. J. Solids Structures 21 (1985), 121–132CrossRefMATHGoogle Scholar
  33. O. Rand, D. Givoli, A finite element spectral method with application to the thermoelastic analysis of space structures, Internat. J. Numer. Meths. Engrg. 30 (1990) 291–306CrossRefMATHGoogle Scholar
  34. S. Reese, P. Wriggers, A finite element method for stability problems in finite elasticity, to appearGoogle Scholar
  35. E. Riks, The application of Newton’s method to the problem of elastic stability., J. Appl. Mech. 39 (1972) 1060–1066CrossRefMATHGoogle Scholar
  36. K. H. Schweizerhof, P. Wriggers, Consistent linearization for path following methods in nonlinear FE analysis, Comput. Meths. Appl. Mech. Engrg. 59 (1986) 261–279CrossRefMATHGoogle Scholar
  37. J. C. Simo, T. J. R. Hughes, Plasticity, viscoplasticity and viscoelasticity: formulation, algorithms and numerical analysis, Springer-Verlag, Berlin, to appearGoogle Scholar
  38. J. C. Simo, F. Armero, Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Internat. J. Numer. Meths. Engrg. 33 (1992), 1413–1449CrossRefMATHMathSciNetGoogle Scholar
  39. J. C. Simo, F. Armero, R. L. Taylor, Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems, to appearGoogle Scholar
  40. J. C. Simo, R. L. Taylor, Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Comp. Methods Appl. Mech. Eng. 85 (1991), 273–310CrossRefMATHMathSciNetGoogle Scholar
  41. A. Spence, A. D. Jepson, The numerical calculation of cusps, bifurcation points and isola formation points in two parameter problems, in: Köpper, Mittelmann, Weber, eds., Numerial methods for bifurcation problems, ISNM 70 ( Birkhäuser, Basel, 1984 ), 502–514CrossRefGoogle Scholar
  42. T. Sussman, K.-J. Bathe, A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Computer & Structures 26 (1987) 357–409CrossRefMATHGoogle Scholar
  43. W. Wagner, Zur Behandlung von Stabilitätsproblemen der Elastostatik mit der Methode der Finiten Elemente, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, F91 /1, 1991Google Scholar
  44. W. Wagner, P. Wriggers, A simple method for the calculation of post-critical branches, Engineering Computations 5 (1988) 103–109CrossRefGoogle Scholar
  45. E. W. Wilkes, On the stability of a circular tube under end thrust, Q. J. Mech. appl. Math. 8 (1955), 88–100CrossRefMATHMathSciNetGoogle Scholar
  46. P. Wriggers, S. Reese, Thermoelastic stability of trusses with temperature- dependent constitutive relations, Internat. J. Numer. Meths. Engrg. 35 (1992), 1891–1906CrossRefMATHGoogle Scholar
  47. P. Wriggers, J. C. Simo, A general procedure for the direct computation of turning and bifurcation points, Internat. J. Numer. Meths. Engrg. 30 (1990) 155–176CrossRefMATHGoogle Scholar
  48. P. Wriggers, R. L. Taylor, A fully non-linear axisymmetrical membrane element for rubber-like materials, Eng. Comput. 7 (1990) 303–310CrossRefGoogle Scholar
  49. P. Wriggers, W. Wagner, C. Miehe, A quadratically convergent procedure for the cal-culation of stability points in finite element analysis., Comput. Meths. Appl. Mech. Engrg. 70 (1988) 329–347CrossRefMATHGoogle Scholar
  50. F. Ziegler, Snap-through buckling of a viscoelastic von Mises truss in a random temperature field, J. Appl. Mech. 36 (1969) 338–340CrossRefGoogle Scholar
  51. F. Ziegler, F. G. Rammerstorfer, Thermoelastic stability in R. P. IIetnarski, Thermal stresses III, North-Holland, Amsterdam, 1989Google Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • P. Wriggers
    • 1
  • S. Reese
    • 1
  1. 1.T.H. DarmstadtDarmstadtGermany

Personalised recommendations