Advertisement

Foundations of Experimental Mechanics: Principles of Modelling, Observation and Experimentation

  • Jerzy T. Pindera
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 264)

Abstract

As it is indicated in the preface to the book, the major problem of contemporary experimental research in mechanics is the growth of discrepancies or even contradictions between the theory and technique of producing, collecting and processing of information-carrying signals, and the typical theoretical bases for methods used in Experimental Mechanics.

Keywords

Transfer Function Input Signal Experimental Mechanic Correspondence Principle Physical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brillouin, L., Scientific Uncertainty, and Information, Academic Press, New York 1964.MATHGoogle Scholar
  2. 2.
    Popper, K.R., The Logic of Scientific Discovery, Harper and Row, London and New York, 1959, (1968).MATHGoogle Scholar
  3. 3.
    Krajewski, W., Correspondence Principle and Growth of Science, D. Reidel Publishing Company, Dordrecht-Holland, Boston, U.S.A., 1977.CrossRefGoogle Scholar
  4. 4.
    Kuhn, T.S., The Structure of Scientific Revolution, University of Chicago Press, Chicago, Illinois, 1962, 1970.Google Scholar
  5. 5.
    Wade, N. and Kuhn, T.S., Revolutionary Theorist of Science, Science, 197, 143–145, 1977.ADSCrossRefGoogle Scholar
  6. 6.
    Sedov, L.I., Introduction to the Mechanics of a Continuous Medium, (translated from the Russian edition, Moscow, 1962), Addison-Wesley Publishing Co., 1965.MATHGoogle Scholar
  7. 7.
    Sedov, L.I., On Prospective Trends and Problems in Mechanics of Continuous Media, (in Russian), Prikladnaya Matematika i Meklhanika, 40, 963–980, 1976. English translation, Pergamon Press Ltd., 1977.MathSciNetGoogle Scholar
  8. 8.
    Tiller, A.W., Materials Science and Applied Science, Science, 16, 469–475, 1969.ADSCrossRefGoogle Scholar
  9. 9.
    Kac, M., Some Mathematical Models in Science, Science, 166, 695–699, 1969.ADSCrossRefGoogle Scholar
  10. 10.
    Pindera, J.T., Contemporary Trends in Experimental Mechanics: Foundations, Methods, Applications, in Experimental Mechanics in Research and Devslopment, Pindera, J.T., Leipholz, H.H.E., Rimrott, F.P.J, and Grierson, D.E., Eds., SM Study No. 9, University of Waterloo Press, Ontario, Canada, 1973.Google Scholar
  11. 11.
    Olszak, W., Mechanics Today: Lights and Shadows, Lecture given at Canadian Congress of Applied Mechanics, Fredericton, May 26–80, 1975.Google Scholar
  12. 12.
    Sedov, L.I., Theoretical Constructions of Selection of Actual Events from the Virtual Ones, in manuscript; courtesy of the author, 1979.Google Scholar
  13. 15.
    Pindera, J.T., How General can be Teaching of Experimental Stress Analysis, Proc. of the Fourth Int. Conf. on Experimental Stress Analysis, Cambridge, April 6–10, 1970, Institution of Mechanical Engineering, London, 54 2–545, 1971.Google Scholar
  14. 14.
    Pindera, J.T., Problems of Reliability of Common Models of Basic Responses of Materials and Systems, Proc. of the VIII Symposium on Experimental Research in Mechanics of Solids, September 4–6, 1978. Warsaw, Poland.Google Scholar
  15. 15.
    Ilussey, M., Modellino I and II, The Open University Press, Walton Mall, Rlechley Buckinghamshire, 1972.Google Scholar
  16. 16.
    Naughton, J., Scientific Method and System Modelling, The Open University Press, Walton Hall, Milton Keynes, 1975.Google Scholar
  17. 17.
    Pindera, J.T., Leipholz, H.H.E., Rimrott, R.P.J, and Grierson, D.E., Eds., Experimental Mechanics in Research and Development, Proc. of the Int. Sym. held at the University of Waterloo, June 12–16, 1972, University of Waterloo Press, Solid Mechanics Division, Waterloo, Ontario, Canada, 1973.MATHGoogle Scholar
  18. 18.
    Axelrad, D.R., Random Theory of Deformation of Structured Media and Axelrad, D.R. and Provan, J.W., Thermodynamics of Deformation in Structured Media, International Centre for Mechanical Sciences, Udine, Italy, Springer-Verlag, New York, 1972.MATHGoogle Scholar
  19. 19.
    Doeblin, E.O., Measurement Systems: Application and Design, McGraw-Hill, 1975.Google Scholar
  20. 20.
    Soodak, H. and Iberall, A., Homeokinetics: A Physical Science for Complex Systems, Science, 201, 579–582, 1978.ADSCrossRefGoogle Scholar
  21. 21.
    Alexrad, D.R., Micromechanics of Solids, Elsevier Scientific Publishing Co., Amsterdam and New York, 1978.Google Scholar
  22. 22.
    Reiner, M., Rheology, in Encyclopedia of Physics, S. Flügge, Ed., VI, 434–510, Springer-Verlag, Berlin, 1958.Google Scholar
  23. 23.
    Leipholz, H.H.E., Analytical Foundations of Experimental Mechanics. Trends in Analytical Mechanics, in Experimental Mechanics in Research and Development, Pindera, J.T. et al, Eds., Solid Mechanics Division, University of Waterloo Press, Ontario, Canada, 1973.Google Scholar
  24. 24.
    Van Geen, R., Dispersion chromatique de l’effet photoelastique, Proc. 2nd Int. Conf. on Experimental Stress Analysis, Paris, France, April 10–14, 1962.Google Scholar
  25. 25.
    Pindera, J.T. and Cloud, G.L., On Dispersion of Birefringence of Photoelastic Materials, Experimental Mechanics, 6, 470–480, 1966.CrossRefGoogle Scholar
  26. 26.
    Cloud, G.L. and Pindera, J.T., Techniques in Infrared Photoelasticity, Experimental Mechanics, 8, 193–201, 1968.CrossRefGoogle Scholar
  27. 27.
    Cloud, G.L., Mechanical Optical Properties of Polycarbonate Resin and Some Relations with Material Structure, Experimental Mechanics, 9, 489–499, 1969.CrossRefGoogle Scholar
  28. 28.
    Pindera, J.T. and Straka, P., On Physical Measures of Rheological Responses of Some Materials in Wide Ranges of Temperature and Spectral Frequency, Rheologica Acta, 13, 338–351, 1974.CrossRefGoogle Scholar
  29. 29.
    Pindera, J.T. and Sinha, N.K., On the Studies of Residual Stresses in Glass Plates, Experimental Mechanics, 11, 113–120, 1971.CrossRefGoogle Scholar
  30. 30.
    Pindera, J.T., Alpay, S.A. and Krishnamurthy, A.R., New Developments in Model Studies of Liquid Flow by Means of Flow Birefringence, Trans, of the CSME, 3, 95–102, 1975.Google Scholar
  31. 31.
    Kestin, J.A., Course in Therrnodynamics, Vol. I and II, Publishing Co., Toronto, 1966, 1968.Google Scholar
  32. 32.
    Sciammarella, C.A., Basic Optical Law in the Interpretation of Moiré Patterns Applied to the Analysis of Strains — Part 1, Experimental Mechanics, 5, 154–160, 1965.CrossRefGoogle Scholar
  33. 33.
    Pindera, J.T., On the Transfer Properties of Photoelastic Systems, in Proc. of the Seventh All-Union Conf. on Photo elasticity, Tallinn, November 23–26, 48–63, 1971.Google Scholar
  34. 34.
    Pindera, J.T. and Straka, P., Response of Integrated Polariscope, Journal of Strain Analysis, 8, 65–76, 1973.CrossRefGoogle Scholar
  35. 35.
    Pindera, J.T., Response of Photoelastic Systems, Trans, of the CSME, 2, 21–30, 1973–74.Google Scholar
  36. 36.
    Mayer, N. and Rohrbach, C., Handbook for Fluidic Measurements, (in German), VDI-Verlag, Düsseldorf, 1977.Google Scholar
  37. 37.
    Stein, P.K., Measurement Engineering, Vol. I: Basic Principles, 6th Edition, Stein Engineering Services, Inc., Phoenix, Arizona, 1970.Google Scholar
  38. 38.
    Lewicki, B. and Pindera, J.T., Photoelastic Models of Reinforced Structures, (in Polish), Archiwum Inzynierii Ladowej, 2, 381–418, 1956.Google Scholar
  39. 39.
    Pindera, J.T. and Sze, Y., Studies of Physical and Mathematical Models of Some Flanged Connections, in Proc. of the Fourth Int. Conf. on Experimental Stress Analysis, April 6–10, 1970, Cambridge, England, Institution of Mechanical Engineering, Westminster, London, 395–408, 1971.Google Scholar
  40. 40.
    Pindera, J.T. and Sze, Y., Response to Loads of Flat-Faced Flanged Connections and Reliability of Some Design Methods, Trans, of the CSME, 1, 37–44, 1972.Google Scholar
  41. 41.
    Pindera, J.T. and Sze, Y., Characteristic Parameters of Response of Plates in Contact, in: Proc. of the 2nd Int. Conf. on Structural Mechanics in Reactor Technology, Berlin, September 10–14, 1973, Paper M5/8, 1–12.Google Scholar
  42. 42.
    Pindera, J.T. and Sze, Y., Influence of the Bolt System on the Response of the Face-to-Face Flanged Connection, in: Proc. of the 2nd Int. Conf. on Structural Mechanics in Reactor Technology, Berlin, September 10–14, 1973, Paper G2/6, 1–13.Google Scholar
  43. 43.
    Pindera, J.T., Experimental Study of Some Problems Related to Responses of Thick Plates, (in German), in: Experimentelle Spannungs-und Dehnungsanalyse, Laermann, K.-H., Ed., Verner-Verlag, Düsseldorf, 25–49, 1977.Google Scholar
  44. 44.
    Laermann, K.-H., Experimental Investigations of Plates. Theoretical Foundations, (in German), Verner-Verlag, Düsseldorf, 1977.Google Scholar
  45. 45.
    Stuart, H.A., Physics of High Polymers, (in German), 4, Springer-Verlag, Berlin, 1956.Google Scholar
  46. 46.
    Jira, T., Mechanical and Photoelastic Behaviour of Celluloid at Biaxial Load, (in German), Konstruktion, 9, 438–449, 1957.Google Scholar
  47. 47.
    Hiltscher, R., Theorie and Application of Photoelasticity in Elastic-Plastic Range, (in German), VDI Zeitschrift, 97, 49–58, 1955.Google Scholar
  48. 48.
    Loreck, R., Investigation of Suitability of Polyester Resin “Leguval” and Some Other Polymers as Materials for Photoelastic Models, (in German), Kunststoffe, 52, 139–143,1962.Google Scholar
  49. 49.
    Pindera, J.T., Some Research Work in Photoelasticity Carried Out in the Polish Academy of Sciences, (in Russian), in: Polarization-noopticheski metod issledovania napriazheni Trudy Konferentsi, February 13–21, 1958, Izd. Leningradskogo Universiteta, 32–44, 1960.Google Scholar
  50. 50.
    Pindera, J.T., Rheological Properties of Some Polyester Resins, Part I, II and III, (in Polish), Rozprawy Inzynierskie, 3, 361–411, 481–540, 1959.Google Scholar
  51. 51.
    Pindera, J.T., Some Rheological Problems at Photoelastic Investigations, in Proc. Int. Spannungsoptisches Sym., Berlin, April 10–15, 1961, Akademie-Verlag, Berlin, 155–172, 1962.Google Scholar
  52. 52.
    Read, B.E., Dynamic Birefringence of Amorphous Polymers, Journal of Polymer Science, Part C., 87–100, 1964.Google Scholar
  53. 53.
    Ward, I.M. and Pinnock, P.R., The Mechanical Properties of Solid Polymers, British Journal of Applied Physics, 17, 3–32, 1966.ADSCrossRefGoogle Scholar
  54. 54.
    Pindera, J.T., Remarks on Properties of Photoviscoelastic Model Materials, Experimental Mechanics, 6, 375–380, 1966.CrossRefGoogle Scholar
  55. 55.
    Pindera, J.T. and Kiesling, E.W., On the Linear Range of Behaviour of Photoelastic and Model Materials, Proc. Third Int. Conf. on Experimental Stress Analysis, Berlin, 1966, VDI-Berichte, No. 102, VDI-Verlag, Düsseldorf, 89–94, 1966.Google Scholar
  56. 56.
    Pindera, J.T., On Physical Basis of Modern Photoelasticity Techniques, Bertrage zur Spannungs-und Dehnungsanalyse, Vol. V, Academie-Verlag, Berlin 103–130, 1968.Google Scholar
  57. 57.
    Kiesling, E.W. and Pindera, J.T., Linear Limit Stresses of Some Photoelastic and Mechanical Models Materials, Experimental Mechanics, 9, 337–347, 1969.CrossRefGoogle Scholar
  58. 58.
    Pindera, J.T. and Straka, P., On Physical Measures of Rheological Responses of Some Materials in Wide Ranges of Temperature and Spectral Frequency, Rheologica Acta, 13, 338–351, 1974.CrossRefGoogle Scholar
  59. 59.
    Pindera, J.T., Straka, P. and Krishnamurthy, A.R., Rheological -Responses of Materials Used in Model Mechanics, in: Proc. of the Fifth Int. Conf. on Experimental Stress Analysis, held in Udine, Italy, May 27–31, 1974, CISM, Udine, 2.85–2.98, 1974.Google Scholar
  60. 60.
    Pindera, J.T., Straka, P. and Tschinke, M.R., Actural Thermoelastic Response of Some Engineering Materials and its Applicability in Investigations of Dynamic Response of Structures”, VDI-BERICHTE, 313, 579–584, 1978.Google Scholar
  61. 61.
    Andrews, R.D. and Hammack, T.J., Temperature Dependence of Orientation Birefringence of Polymers in the Glassy and Rubbery States, Journal of Polymer Science, Part C., Polymer Symposia, Stein, R.S., Ed., No. 5, Interscience Publishers, 101–112, 1964.Google Scholar
  62. 62.
    Maxwell, J.C., Double Refraction of Viscous Fluids in Motion, Roy. Soc. Proc, 22, 46, 1873–74.CrossRefGoogle Scholar
  63. 63.
    Kundt, A., On the Birefringence of Light in Moving Viscous Liquids, (in German), Wiedmann’s Annalen, XIII, 110, 1881.Google Scholar
  64. 64.
    Natanson, M.L., O pewnej wlaściwości podwojnego załamania światła w cieczach odkształcanych mogacej posłużyć do wyznaczania ich czasu zluźniania, (Sur une particularité de la double rèfraction accidentelle dans les liquides pouvant servir à la détermination de leur temps de relaxation), Bull. Acad. Sci., Cracovie, 1–22, 1904.Google Scholar
  65. 65.
    Zaremba, S., Note sur la double refraction accidentelle de la lumière dans les liquides, J. de Phys., 3, 606–611, 1904 and 4, 514–516, 1905.MATHGoogle Scholar
  66. 66.
    Zakrzewski, K., O polożeniu osi optycznych w cieczach odkształcalnych (Sur la position des axes optiques dans les liguides déformés), Bull. Acad. Sci., Cracovie, 50–56, 1904.Google Scholar
  67. 67.
    Wiener, O., Laminai Birefringence, (Lamellare Doppelbrechung), Physikalische Zeitschrift, 5, 332, 1904.MATHGoogle Scholar
  68. 68.
    Roman, C.V. and Krishan, K.S., A Theory of the Birefringence Induced by Flow in Liquids, Phil. Mag., 5, 769–783, 1928.Google Scholar
  69. 69.
    Peterlin, A. and Stuart, H.A., Über den Einfluss der Rotationsbehinderung und der Anisotropie des inneren Feldes aug die Polarisation von Flüssigkeiten, Z. Phys., 113, 663–696, 1939.CrossRefMATHGoogle Scholar
  70. 70.
    Philipoff, W., Flow Birefringence and Stress, J. Appl. Physics, 27, 984–989, 1956.ADSCrossRefGoogle Scholar
  71. 71.
    Pindera, J.T. and Krishnamurthy, A.R., Characteristic Relations of Flow Birefringence, Part 1: Relations in Transmitted Radiation, Experimental Mechanics, 18, 1–10, 1978, Part 2: Relations in Scattered Radiation, Experimental Mechanics, 18, 41–48, 1978.CrossRefGoogle Scholar
  72. 72.
    Jerrard, H.G., Theories of Streaming Double Refraction, Chem. Rev., 59, 345, 1959.CrossRefGoogle Scholar
  73. 73.
    Wayland, M., Streaming Birefringence of Rigid Macromolecules in General Two-Dimensional Laminar Flow, J. Chem. Phys., 33, 769, 1960.ADSCrossRefGoogle Scholar
  74. 74.
    Mindlin, R.D., A Mathematical Theory of Photo-Viscoelasticity, J. Appl. Phys., 20, 206–216, 1949.ADSCrossRefMATHGoogle Scholar
  75. 46.
    Jira, T., Mechanical and Photoelastic Behaviour of Celluloid at Biaxial Load, (in German), Konstruktion, 9, 438–449, 1957.Google Scholar
  76. 47.
    Hiltscher, R., Theorie and Application of Photoelasticity in Elastic-Plastic Range, (in German), VDI Zeitschrift, 97, 49–58, 1955.Google Scholar
  77. 48.
    Loreck, R., Investigation of Suitability of Polyester Resin “Leguval” and Some Other Polymers as Materials for Photoelastic Models, (in German), Kunststoffe, 52, 139–143, 1962.Google Scholar
  78. 49.
    Pindera, J.T., Some Research Work in Photoelasticity Carried Out in the Polish Academy of Sciences, (in Russian), in: Polarization-noopticheski metod issledovania napriazheni Trudy Konferentsi, February 13–21, 1958, Izd. Leningradskogo Universiteta, 32–44, 1960.Google Scholar
  79. 50.
    Pindera, J.T., Rheological Properties of Some Polyester Resins, Part I, II and III, (in Polish), Rozprawy Inzynierskie, 3, 361–411, 481–540, 1959.Google Scholar
  80. 51.
    Pindera, J.T., Some Rheological Problems at Photoelastic Investigations, in Proc. Int. Spannungsoptisches Sym., Berlin, April 10–15, 1961, Akademic-Verlag, Berlin, 155–172, 1962.Google Scholar
  81. 52.
    Read, B.E., Dynamic Birefringence of Amorphous Polymers, Journal of Polymer Science, Part C., 87–100, 1964.Google Scholar
  82. 53.
    Ward, I.M. and Pinnock, P.R., The Mechanical Properties of Solid Polymers, British Journal of Applied Physics, 17, 3–32, 1966.ADSCrossRefGoogle Scholar
  83. 54.
    Pindera, J.T., Remarks on Properties of Photoviscoelastic Model Materials, Experimeyital Mechanics, 6, 375–380, 1966.CrossRefGoogle Scholar
  84. 55.
    Pindera, J.T. and Kiesling, E.W., On the Linear Range of Behaviour of Photoelastic and Model Materials, Proc. Third Int. Conf. on Experimental Stress Analysis, Berlin, 1966, VDI-Berichte, No. 102, VDI-Verlag, Düsseldorf, 89–94, 1966.Google Scholar
  85. 56.
    Pindera, J.T., On Physical Basis of Modern Photoelasticity Techniques, Bertrdge zur Spannungs-und Dehnungsanalyse, Vol. V, Academie-Verlag, Berlin 103–130, 1968.Google Scholar
  86. 57.
    Kiesling, E.W. and Pindera, J.T., Linear Limit Stresses of Some Photoelastic and Mechanical Models Materials, Experimental Mechanics, 9, 337–347, 1969.CrossRefGoogle Scholar
  87. 58.
    Pindera, J.T. and Straka, P., On Physical Measures of Rheological Responses of Some Materials in Wide Ranges of Temperature and Spectral Frequency, Rheologica Acta, 13, 338–351, 1974.CrossRefGoogle Scholar
  88. 59.
    Pindera, J.T., Straka, P. and Krishnamurthy, A.R., Rheological Responses of Materials Used in Model Mechanics, in: Proc. of the Fifth Int. Conf. on Experimental Stress Analysis, held in Udine, Italy, May 27–31, 1974, CISM, Udine, 2.85–2.98, 1974.Google Scholar
  89. 75.
    Green, A.E., Rivlin, R.S. and Spencer, A.J.M., The Mechanics of Non-Linear Materials with Memory, Part I, II and III, Archiv Rational Mechanics Anal., 1, 1–21, 1957; 3, 82–90,.1959 and 4, 387–404, 1960.ADSCrossRefMATHGoogle Scholar
  90. 76.
    Coleman, B.D., Dill, E.H. and Toupin, R.A., A Phenomenological Theory of Streaming Birefringence, Arch. Rational Mech. Anal., 39, 358–399, 1971.ADSMathSciNetGoogle Scholar
  91. 77.
    Theocaris, P., Phenomenological Analysis of Mechanical and Optical Behaviour of Rheo-Optically Simple Materials, in: The Photoelastic Effect and its Applications, Kestens, J., Ed., Springer-Verlag, 1975.Google Scholar
  92. 78.
    Mushelishvili, N.I., Some Basic Problems of the Mathematical Theory of Elasticity, P. N.ordhoff, Groningen-Holland, 324–328, 1953.Google Scholar
  93. 79.
    Sokolnikoff, I.S., Mathematical Theory of Elasticity, McGraw-Hill Book Company, Toronto, 283–287, 1956.Google Scholar
  94. 80.
    Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, McGraw-Hill Book Company, Toronto, 122–127, 1970.MATHGoogle Scholar
  95. 81.
    Frocht, M.M., Photoelasticity, Vol. II, John Wiley, New York, 121–129, 1948.Google Scholar
  96. 82.
    Pindera, J.T., Outline of Photoelasticity, (in Polish), P.W.T., Warszawa, 1953.Google Scholar
  97. 83.
    Pindera, J.T., Technique of Photoelastic Studies of Plane Stress States, (in Polish), Rozprawy Inzynierskie, Polish Academy of Sciences, 3, 109–176, 1955.Google Scholar
  98. 84.
    Pindera, J.T., Contemporary Methods of Photoelasticity, (in Polish), Panstwowe Wydawnictwa Techniczne, Warszawa, 1960.Google Scholar
  99. 85.
    Hondros, G., The Evaluation of Poisson’s Ratio and the Modulus of Materials of a Low Tensile Resistance by the Brazillian Test, Australian J. of Appl. Science, 10, 243–268, 1959.Google Scholar
  100. 86.
    Pindera, J.T., Mazurkiewicz, S.B. and Khattab, M.A., Stress Field in Circular Disk Loaded Along Diameter: Discrepancies Between Analytical and Experimental Results, presented at the SESA Spring Meeting, Wichita, Kansas, May, 1978, Paper No. CR-10.Google Scholar
  101. 87.
    Chong, Ken P., Finite Element and Other Analyses of Split Disks, in manuscript, 1978.Google Scholar
  102. 88.
    Bokshtein, M.F., On Resolving Power of Photoelastic System for Stress Analysis, (in Russian), J. Tekhn. Fiziki, XIX, 1103–1106, 1949.Google Scholar
  103. 89.
    Acloque, P. and Guillemet, G., Method for the Photoelastic Measurement of Stresses “In Equilibrium in the Thickness” of a Plate, (Particular Cases of Toughened Glass and Bent Glass), Selected papers on Stress Analysis presented at the Institute of Physics, Stress Analysis Group Conference, Delft, 1959.Google Scholar
  104. 90.
    Manogg, P., The Light Deflection in an Elastically Deformed Plate and the Shadow Patterns of Circular Notches and Cracks, (in German), Glastechnische Berichte, 39, 323–329, 1966.Google Scholar
  105. 91.
    Born, M. and Wolf, E., Principles of Optics, 5th Edition, Pergamon Press, Oxford, New York, 1975.Google Scholar
  106. 92.
    Hecker, F.W. and Pindera, J.T., Influence of Stress Gradient on Direction of Light Propagation in Photoelastic Specimens, VDI-BERICHTE, 313, 745–754, 1978.Google Scholar
  107. 93.
    Hecker, F.W., Kepich, T. Y. and Pindera, J.T., Neglected Factor in Photoelasticity: Non-linear Light Propagation in Stressed Bodies and Its Significance, Proc. of The 8th All-Union Conf. on Photoelasticity, Tallinn, September 25–28, 1979, Akademia Nauk Estonskoy SSR, Institut Kibernetiki, Tallin, 1, 117–123, 1979.Google Scholar
  108. 94.
    Hecker, F.W., Kepich, T.Y. and Pindera, J.T., Non-Rectilinear Optical Effects in Photoelasticigy Caused by Stress Gradients, in: Proc. IUTAM Sym. on Optical Methods in Mechanics of Solids, Poitiers, September 10–14, 1979.Google Scholar
  109. 95.
    Pindera, J.T., Hecker, F.W. and Krasnowski, B.R., A New Experimental Method: Gradient Photoelasticity, to be published.Google Scholar
  110. 96.
    Pindera, J.T. and Mazurkiewicz, S.B., Photoelastic Isodynes: A New Type of Stress Modulated Light Intensity Distribution, Mech. Res. Comm., 4, 247–252, 1977.CrossRefGoogle Scholar
  111. 97.
    Mazurkiewicz, S.B. and Pindera, J.T., Integrated-Plane Photoelastic Method-Application of Photoelastic Isodynes, Experimental Mechanics, 19, 225–234, 1979.CrossRefGoogle Scholar
  112. 98.
    Pindera, J.T., Elements of More Rigorous Theory and Technique of Isodyne Method and Their Applications to Other Optical Methods, in: Proc. IUTAM Sym. on Optical Methods in Mechanics of Solids, Poitiers, September 10–14, 1979.Google Scholar
  113. 99.
    Pindera, J.T. and Mazurkiewicz, S.B., Optimization of Photoelastic Stress Analysis using Isodyne Method, in: Proc. of The 8th All-Union Conf. on Photoelasticity, Tallinn, September 25–28, 1979, Akademia Nauk Estonskoy SSR, Institut Kibernetiki, Tallinn, I, 145–150, 1979.Google Scholar
  114. 100.
    Hartung, H.F., Burns, D.J. and Pindera, J.T., Ultrasonic Monitoring of Growth of Part-Through Thickness Defects at 290°C, Trans. ASME, Journal of Engineering for Power, 101, 471–476, 1979.CrossRefGoogle Scholar
  115. 101.
    Kino, Gordon S., Nondestructive Evaluation, Science, 206, 173–180, 1979.ADSCrossRefGoogle Scholar
  116. 102.
    Roe, P.H., Soulis, G.N., Handa, V.K., The Discipline of Design, Printed in Canada at the University of Waterloo, 1969.Google Scholar
  117. 103.
    Dixon, J.R., Design Engineering, McGraw-Hill, New York, 1966.Google Scholar

Copyright information

© Springer-Verlag Wien 1981

Authors and Affiliations

  • Jerzy T. Pindera
    • 1
  1. 1.Faculty of EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations