Small Arteries and the Interaction with the Cardiovascular System

  • Thomas Kenner
Part of the International Centre for Mechanical Sciences book series (CISM, volume 270)


The purpose of this paper is the presentation and discussion of problems which are related to the reactions of small resistance vessels and their upstream and downstream effects. It is intended to give a short and broad overlook over this field. The function of small arteries cannot be understood without considering the interaction with other parts of the cardiovascular system. These small muscular vessels are executing control simultaneously on local blood flow and on arterial blood pressure. This dual task sometimes leads to contradicting trends; e.g. during physical exercise we find vasodilatation in order to increase local blood flow, and at the same time vasoconstriction in order to prevent breakdown of the arterial blood pressure. Hydrodynamic phenomena are closely intertwined with metabolically or neurally mediated smooth muscle reactions.


Wave Velocity Input Impedance Small Artery Characteristic Impedance Colloid Osmotic Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature and References

  1. Anliker, M., Histand, M.B. and Ogden, E. (1968), Dispersion and attenuation of small artificial pressure waves in the canine aorta, Circulat.Res. 23, 639.CrossRefGoogle Scholar
  2. Attinger, E.O. and Attinger, F. (1973), Frequency dynamics of the peripheral vascular blood flow, Ann. Rev.Biophys. Bioengineering. 2, 7.CrossRefGoogle Scholar
  3. Basar, E. (1981), Vasculature and circulation, Elsevier/ North Holland, Amsterdam-N.Y.-Oxford.Google Scholar
  4. Basar, E., Basar-Eroglu, C., Demir, N., TUmer, N. and Weiss, C. (1982). The overall myogenic coordination in circulatory dynamics, pp. 509, from Kenner et al.(l.c.)Google Scholar
  5. Bauer, R.D., Busse, R. (1979), The arterial system, dynamics, control theory and regulation. Springer, Berlin-Heidelberg.Google Scholar
  6. Bauer, R.D., Busse, R., Schabert, A. and Wetterer, E. (1982), The role of elastic and viscous wall properties in the mechanics of elastic and muscular arteries, pp. 373, from Kenner et al. (l.c.)Google Scholar
  7. Benninghoff, A., (1930), Blutgefäße and Herz. from: Handbuch der mikroskopischen Anatomie, Bd. VI/1 pp.1, Berlin.Google Scholar
  8. Bergel, D.H. (1961), The dynamic elastic properties of the arterial wall. J. Physiol. (London) 156, 458.Google Scholar
  9. Broemser, Ph. (1932), Beitrag zur Windkesseltheorie des Kreislaufs. Zeitschr. Biol. 93, 149.Google Scholar
  10. Broemser, Ph. and Ranke, F. (1930), Über die Messung des Schlagvolumens des Herzens auf unblutigem Weg. Zeitschr. Biol. 90, 467.Google Scholar
  11. Burton, A.C. (1951), On the physical equilibrium of small blood vessels. Amer.J.Physiol. 164, 319.PubMedGoogle Scholar
  12. Burton, A.C. (1962), Physical principles of circulatory phenomena: the physical equilibrium of heart and blood vessels, from Handbook of physiology. Sect. 2, Circulation, Vol. I, pp. 85, Washington.D.GGoogle Scholar
  13. Busse, R., Bauer, R.D., Burger, W., Sturm, K. and Schabert, A. (1982), Correlation between amplitude and frequency of spontaneous rhythmic contractions and the mean circumferential wall stress of a small muscular artery, from Kenner et al. pp. 363 (l.c.)Google Scholar
  14. Busse, R., Sturm, K., Schabert, A. and Bauer, R.D. (1982b), The contribution of the parallel and series elastic components to the dynamic properties of the rat tail artery under two different smooth muscle tones. Pflügers Arch. 393, 328.PubMedCrossRefGoogle Scholar
  15. Caro, C.G., Pedley, T.J., Schoter, R.C. and W.A. Seed, (1978), The mechanics of the circulation. Oxford University Press. N.Y.-Toronto.Google Scholar
  16. Cox, R.H. (1982), Determination of the mechanical properties of the contractile system in arterial smooth muscle models. pp.317, from Kenner et al. (l.c.)Google Scholar
  17. Dobrin, P.B., (1978), Mechanical properties of arteries. Physiol. Rev. 58, 397.PubMedGoogle Scholar
  18. Dujardin, J.P.L. and Scott, D.L. (1982), The dynamic arterial pressure flow relationship and total arterial compliance in spontaneously hypertensive and normal rats. pp. 199, from Kenner et al. (l.c.)Google Scholar
  19. Folkow, B. and Neil, E. (1971), Circulation, Oxford University Press, N.Y.-London-Toronto.Google Scholar
  20. Frank, O. (1899), Die Grundform des arteriellen Pulses. Zeitschr. Biol. 37, 483.Google Scholar
  21. Frank, O. (1906), Die Analyse endlicher Dehnungen und die Elastizität des Kautschuks. Ann. Physik. 21, 602.CrossRefGoogle Scholar
  22. Frank, O. (1920), Die Elastizität der Blutgefäße. Zeitschr. Biol. 71, 255.Google Scholar
  23. Fung, Y.C. (1981), Biomechanics, mechanical properties of living tissues. Springerverlag, N.Y.-Heidelberg-Berlin.Google Scholar
  24. Gessner, U. (1981) personal communication.Google Scholar
  25. Gow, B.S. (1980), Circulatory correlates: vascular impedance, resistance, and capacity. pp 353, from Handbook of Physiology. Vol. II Vascular smooth muscle. Washington D.C.Google Scholar
  26. Green, H.D. (1944), Circulation: Physical principles, from O.Glasser (ed.) Medical Physics. Year Book Publ., Chicago.Google Scholar
  27. Green, H.D., Lewis, R.N., Nickerson, N.D. and Heller, L. (1944), Blood flow, peripheral resistance and vascular tonus, with observations on relationship between blood flow and cutaneous temperatures. Amer.J.Physiol. 141, 518.Google Scholar
  28. Gross, J.F., (1977), The significance of pulsatile microhemodynamics. pp. 365 from G. Kaley and B.M. Altura (eds.) Microcirculation Vol. 1, University Park Press, Baltimore.Google Scholar
  29. Gross, J.F. and Popel, A.S. (1980), Mathematics of microcirculation phenomena. Raven Press, N.Y.Google Scholar
  30. Guyton, A.C. and Cowley, A.W., (1976), Cardiovascular Physiology II., University Park Press, Baltimore.Google Scholar
  31. Hatakeyama, I., (1982), Hydrodynamic amplification in blood vessels and cardiovascular dynamics. pp.181, from Kenner et al. (l.c.)Google Scholar
  32. Hudetz, A.G. and Monos, E., (1982), A structural model for nonlinear anisotropic behaviour of the arterial wall. pp. 337. from Kenner et al. (1.c.)Google Scholar
  33. Iberall, A.S., (1967), Anatomy and steady flow characteristics of the arterial system with an introduction to its pulsatile characteristics. Math. Biosci. 1, 375.CrossRefGoogle Scholar
  34. Intaglietta, M., (1977), Transcapillary exchange of fluid in single microvessels. pp. 197, from Kaley and Altura (l.c.)Google Scholar
  35. Kaley, G. and Altura, B.M. (eds.) (1977). Mircocirculation Vol.I., University Park Press, Baltimore.Google Scholar
  36. Kenner, T. (1967), Neue Gesichtspunkte und Experimente zur Beschreibung und Messung der Arterienelastizität. Archiv.Kreislaufforschung. 54, 68.CrossRefGoogle Scholar
  37. Kenner, T. (1971), Dynamic control of flow and pressure in the circulation. Kybernetik, 9, 215.PubMedCrossRefGoogle Scholar
  38. Kenner, T. (1972), Flow and pressure in the arteries. from Fung, Y.C. et al. (eds.), Biomechanics, its foundations and objectives. Prentice Hall. Englewood Cliffs N.J.Google Scholar
  39. Kenner, T. (1974), Beziehungen zwischen Dynamik und Regulation des Arteriensystems. Verh. Dtsch. Ges. Kreislaufforschung. 40, 41.CrossRefGoogle Scholar
  40. Kenner, T. (1975), The central arterial pulses. Pflügers Arch. 353, 67.PubMedCrossRefGoogle Scholar
  41. Kenner, T. (1978), Models of the arterial system. from R.D.Bauer and R.Busse (eds.). The arterial system. pp. 80, Springerverlag, Berlin-Heidelberg.Google Scholar
  42. Kenner, T. (1979), Physical and mathematical modeling in cardiovascular systems. pp.41, from N.H.C.Hwang et al. Quantitative cardiovascular studies. University Park-Press.Google Scholar
  43. Kenner, T. and Bergmann H. (1975), Frequency dynamics of arterial autoregulation. Pflügers Arch. 356, 169.PubMedCrossRefGoogle Scholar
  44. Kenner, T., Busse, R. and Hinghofer-Szalkay, H. (1982), Cardiovascular system dynamics - models and measurements, Plenum Press. N.Y-London.CrossRefGoogle Scholar
  45. Kenner, T., Hinghofer-Szalkay, H., Leopold, H. and Pogglitsch, H. (1977b). The relation between the density of blood and the arterial blood pressure in animal experiments’ and in patients during hemodialysis. Zeitschr. Kardiol. 66, 399.Google Scholar
  46. Kenner, T., Hinghofer-Szalkay, H., Moser, M and Leopold, H. (1982) The application of the continuous recording of blood density for hemodynamic measurements. pp. 431, from Kenner et al. (l.c.)Google Scholar
  47. Kenner, T., Moser, M. and Hinghofer-Szalkay, H. (1980), Determination of cardiac output and transcapillary fluid exchange by continuous recording of blood density. Basic Res. Cardiol. 75, 501.Google Scholar
  48. Kenner, T. and Ono, K. (1971), Reciprocal autoregulation of blood flow and blood pressure. Experientia 27, 528.PubMedCrossRefGoogle Scholar
  49. Kenner, T. and Ono, K, (1971), The low frequency input impedance of the renal artery. Pflügers Arch. 324, 155.PubMedCrossRefGoogle Scholar
  50. Kenner, T. and Ono, K. (1972), Humoral autoregulation of blood flow and blood pressure. Experientia 28, 528.PubMedCrossRefGoogle Scholar
  51. Kenner, T. and Ono, K. (1972), Analysis of slow autooscillations of arterial flow. Pflügers Arch. 331, 347.PubMedCrossRefGoogle Scholar
  52. Kenner, T. and Ono, K. (1972), Interaction between circulatory control and drug-induced reactions. Pflügers Arch. 331, 335.PubMedCrossRefGoogle Scholar
  53. Kenner, T., Ueda, M, Huntsman, L. and Attinger, E.O. (1968), Effects of local and general hypoxia on iliac flow. Angiology 5, 345.Google Scholar
  54. Kenner, T., van Zwieten, P.A. (1982), Use of hemodynamic analysis for the interpretation of the mode of action of vasoactive drugs. from Kenner et al. (l.c.)Google Scholar
  55. Klitzman, B. and Duling, B.R. (1979), Microvascular hematocrit and red blood cell flow in resting and contracting striated muscle. Amer.J.Physiol. 273, 481.Google Scholar
  56. Lee, J.S. (1980), Micro-macroscopic scaling. pp.159 from Gross and Popel (l.c.)Google Scholar
  57. Lee, J.S. and Kenner, T. (1982), Microvascular dynamics. from Kenner et al. pp. 413, (l.c.)Google Scholar
  58. Lee, J.S. and Nellis, S. (1974), Modeling studies on the distribution of flow and volume in the microcirculation of cat mesentery. Ann. Biomed. Eng. 2, 206.CrossRefGoogle Scholar
  59. Lefèvre, J. (1982), Teleonomical representation of the pulmonary arterial bed of the dog by a fractal tree. pp. 137, from Kenner et al. (l.c.)Google Scholar
  60. Leopold, H., Jellinek, R. and Tilz, G. (1977), The application of the mechanical oscillator technique for the determination of the density of physiological fluids. Biomed. Technik. 22, 231.CrossRefGoogle Scholar
  61. Lindner, A. and Ronniger, R. (1955), Zur Darstellung der Beziehungen zwischen zentralen und peripheren Pulsen als Ortskurven. Arch. Kreislaufforschung. 22, 72.CrossRefGoogle Scholar
  62. Lipowsky, H.H., Usami, S. and Chien, S. (1980), In vivo measurements of “apparent viscosity” and microvascular hematocrit in the mesentery of the cat. Microvasc. Res. 19, 297.PubMedCrossRefGoogle Scholar
  63. Lipowsky, H.H. and Zweifach, B.W. (1974), Network analysis of microcirculation of cat mesentery. Microvasc. Res. 7, 73.PubMedCrossRefGoogle Scholar
  64. Mayrovitz, H.N., Wiedeman, M.P. and Noordergraaf, A. (1976), Analytical characterization of microvascular resistance distribution. Bull. Math. Biphys. 38, 71.Google Scholar
  65. McDonald, D.A. (1974), Blood flow in arteries, 2nd ed. Edward Arnold, London.Google Scholar
  66. Metzger, H. (1973), Geometric considerations in modeling oxygen transport processes in tissue. Advances Exp.Biol. Med. 376, 661.Google Scholar
  67. Monos, E. and Kovach, A.G.B. (1982), Biomechanics of isolated canine splenic artery. pp.327, from Kenner et al.(l.c.)Google Scholar
  68. Newman, D.L. and Greenwald, S.E. (1982) The effect of smooth muscle activity on the static and dynamic properties of the rabbit carotid artery. pp. 393, from Kenner et al. (1.c.)Google Scholar
  69. Noordergraaf, A. (1978), Circulatory systems dynamics. Academic Press, N.Y.Google Scholar
  70. O’Rourke, M.F. (1982), Vascular impedance in studies of arterial and cardiac function. Physiol. Rev. 62, 570.PubMedGoogle Scholar
  71. O’Rourke, M.F. (1982), Vascular impedance - a call for standardization. pp. 175, from Kenneret al. (l.c.)Google Scholar
  72. Patel, D.J., Austen, W.G. and Greenfield, J.C. (1964), Impdance of certain large blood vessels in man. Ann. N.Y. academy Sci. 115, 1129.Google Scholar
  73. Patel, D.J., Freitas, F.M., Greenfield, J.C. and Fry, D.L. (1963), Relationship of radius to pressure along the aorta in living dogs. J.Appl. Physiol. 18, 1111.Google Scholar
  74. Patel, D.J., Vaishnav, R.N. and Atabek, H.B. (1979), Local mechanical properties of the vascular intima and adjacent flow fields. p. 215, from Hwang et al. Quantitative cardiovascular studies. University Park Press.Google Scholar
  75. Pollak, G.H., Reddy, R.V. and Noordergraaf, A. (1968), Input impedance, wave travel and reflections in the pulmonary arterial tree. Studies using an electric analog. IEEE transact. BME. 15, 151.CrossRefGoogle Scholar
  76. Popel, A.S. (1980) Mathematical modeling of convective and diffusive transport in the microcirculation. pp.63, from Gross and Popel (l.c.)Google Scholar
  77. Rhodin, J.A.G. (1980), Architecture of the vessel wall. pp. 1lfrom Handbook of Physiology, Vol. I I, Vascular smooth muscle, Washington D.C.Google Scholar
  78. Ronniger, R., (1954), Über eine Methode der übersichtlichen Darstellung hämodynamischer Zusammenhänge. Arch. Kreislaufforschung. 21, 127.CrossRefGoogle Scholar
  79. Ronniger, R., (1955). Zur Theorie der physikalischen Schlagvolumenbestimmung. Arch. Kreislaufforschung. 22, 332.CrossRefGoogle Scholar
  80. Rosen, R. (1967), Optimality principles in biology. Butterworths, London.CrossRefGoogle Scholar
  81. Rubenstein, H.J., Kenner, T. and Ono, K. (1973), Pseudorandom test technique for the characterization of local hemodynamic control. Pflügers Arch. 343, 309.PubMedCrossRefGoogle Scholar
  82. Schimmler, W., (1965), Untersuchungen zum Elastizitätsproblem der Aorta. Arch.Kreislaufforschung, 47, 189.CrossRefGoogle Scholar
  83. Schleier, J. (1918). Der Energieverbrauch der Blutbahn. Pflügers Arch. 173, 172.CrossRefGoogle Scholar
  84. Schmid-Schönbein, H. (1976), Microrheology of erythrocytes, blood viscosity and the distribution of blood flow in the microcirculation, pp.1, from Guyton and Cowley (l.c.)Google Scholar
  85. Sipkema, P. and Westerhof, N. (1982), Peripheral resistance and low frequency impedance of the femoral bed. pp.501, from Kenner et al. (l.c.)Google Scholar
  86. Taylor, G. (1953), Dispersion of soluble matter in solvent flowing slowly through a tube. Proc.Royal Soc.Lond. Ser. 219, 186.CrossRefGoogle Scholar
  87. Taylor, M.G., (1966), Use of random excitation and spectral analysis in the study of frequency dependent parameters of the cardiovascular system. Circulat. Res. 18, 585.PubMedCrossRefGoogle Scholar
  88. Vadot, L. (1967), Mécanique du coeur et des arteres. L’expansion scientifique Franc., Paris.Google Scholar
  89. Van Loon, P., Klip, W. and Bradley, E.L. (1977), Length-force and volume-pressure relationship of arteries. Biorheology, 14, 181.PubMedGoogle Scholar
  90. Weizsäcker, H.W. and Pascale, K. (1977), Das Kraft-Dehnungsverhalten von Rattenkarotiden in Längsrichtung bei verschiedenem Innendruck und seine modulmäßige Deutung. Basic Res. Cardiol. 72, 619.Google Scholar
  91. Weizsäcker, H.W. and Pascale, K. (1982), Anisotropic passive properties of blood vessel walls. pp.347, from Kenner et al. (l.c.)Google Scholar
  92. Westerhof, N., Bosman, F., De Vries, C.J. and Noordergraaf, A. (1969) J. Biomechanics 2, 121.CrossRefGoogle Scholar
  93. Westerhóf, N., Sipkema, P., Elzinga, G, Murgo, J.P. and Giolma, J.P., (1979), Arterial impedance, pp. 111, from Hwang et al., Quantitative cardiovascular studies, University Park Press.Google Scholar
  94. Wetterer, E., Bauer, R.D. and Busse, R. (1977), Arterial dynamics. INSERM-Euromech 91, Cardiovascular and pulmonary dynamics, Vol. 71, pp. 17.Google Scholar
  95. Wetterer, E. and Kenner, T. (1968), Grundlagen der Dynamik des Arterienpulses. Springerverlag, Berlin-N.Y. Heidelberg.Google Scholar
  96. Wetterer, E. and Pieper, H. (1953a), Über die Gesamtelastizität des arteriellen Windkessels und ein experimentelles Verfahren zu ihrer Bestimmung am lebenden Tier. Zeitschr. Biol. 106, 23.Google Scholar
  97. Wetterer, E. and Pieper, H. (1953b), Messungen am Arterien-system in vivo während erzwungener periodischer Volumenschwankungen. Verh.Dtsch.Ges.Kreislaufforschung 19, 259.Google Scholar
  98. Wezler, K. and Sinn, W., (1953), Das Strömungsgesetz des Blutkreislaufs. Ed. Cantor, Aulendorff i. Württemberg.Google Scholar
  99. Whitmore, R.L. (1968), Rheology of the Circulation. Pergamon Press, Oxford-London-N.Y.Google Scholar
  100. Wiedeman, M.P. (1962), Lengths and diameters of peripheral arterial vessels in living animals. Circulat. Res. 10, 686.CrossRefGoogle Scholar
  101. Wiedeman, M.P. (1963), Dimensions of blood vessels from distributing artery to collecting vein. Circulat.Res. 12, 375.PubMedCrossRefGoogle Scholar
  102. Witzig, K. (1914), Über erzwungene Wellenbewegungen zäher, inkompressibler Flüssigkeiten in elastischen Röhren. Dissertation, Bern.Google Scholar
  103. Womersley, J.R. (1957), An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. WADC Report, TR 65–614.Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Thomas Kenner
    • 1
  1. 1.Physiologisches InstitutUniversität GrazGrazAustria

Personalised recommendations