Dynamics of Fluid Filled Tubes

  • J. B. Haddow
  • T. B. Moodie
  • R. J. Tait
Part of the International Centre for Mechanical Sciences book series (CISM, volume 270)


Models for describing pressure pulse propagation in arteries can, with few exceptions, be separated into two categories depending upon the emphasis placed on the fluid mechanics or the solid mechanics. Models in the first category employ ideas first put forward by Euler (1844) who proposed combining the equation of motion for an inviscid fluid together with the continuity equation and a third equation relating the pressure in the tube to its cross-sectional area. Euler’s equations were first solved in the context of blood flow by Lambert (1958) who used a pressure-area relation based on experimental data rather than the one proposed by Euler. These ideas have been considerably refined and developed to employ general pressure-area relations, include outflow through porous walls (Rudinger, 1966), and study the development of shocks (Rudinger, 1970), (Teipel, 1973), (Forbes, 1979).


Dispersion Relation Shear Deformation Tube Wall Rotatory Inertia Elastic Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature and References

  1. 1.
    Brigham, E.O. (1974), The Fast Fourier Transform, Prentice Hall.Google Scholar
  2. 2.
    Euler, L. (1844), Principia pro motu sanguins per arterias detetminado, opera posthuma mathematica et physica anno 1844 détecta, eiderant P.H. Fuss et N. Fuss. Petropoli: Apud Eggers et Socios, Vol. 2, 1862.Google Scholar
  3. 3.
    Forbes, L.K. (1979), A note on the solution of the one-dimensional unsteady equations of arterial blood flow by the method of characteristics, J. Austral. Math Soc. 21 (Series B), 45.CrossRefGoogle Scholar
  4. 4.
    Forrestal, M.J. and Herrmann, G. (1965), Response of a submerged cylindrical shell to an axially propagating step wave, J. Appl. Mech. 32, 788.CrossRefGoogle Scholar
  5. 5.
    Hermann, G. and Mirsky, I. (1956), Three dimensional and shell theory analysis of axially symmetric motions of cylinders, J. Appl. Mech. 23, 563.Google Scholar
  6. 6.
    Klip, W. (1962), Velocity and Damping of the Pulse Wave, Martinus Nÿhoff, The Hague.Google Scholar
  7. 7.
    Lamb, H. (1898), On the velocity of sound in a tube, as affected by the elasticity of the walls, Manchester Lit. Phil. Soc. Mem. Proc. 42 (9), 1.Google Scholar
  8. 8.
    Lambert, J.W. (1958), On the nonlinearities of fluid flow in nonrigid tubes, J. Franklin Inst., 266, 83.CrossRefGoogle Scholar
  9. 9.
    Rubinaw, S.I. and Keller, J.B. (1968), Hydrodynamic aspects of the circulatory system, In Hemorheology, Proc. 1st. Int. Conf. Univ. of Iceland, A.L. Copley, Ed., Pergamon.Google Scholar
  10. 10.
    Rubinow, S.I. and Keller, J.B. (1971), Wave propagation in a fluid filled tube, J. Acoust. Soc. Am. 50, 198.CrossRefGoogle Scholar
  11. 11.
    Rubinow, S.I. and Keller, J.B. (1978), Wave propagation in a viscoelastic tube containing a viscous fluid, J. Fluid Mech. 88, 181.CrossRefGoogle Scholar
  12. 12.
    Rudinger, G. (1966), Review of current mathematical methods for the analysis of blood flow, Biomedical Fluids Symposium, ASME, New York.Google Scholar
  13. 13.
    Rudinger, G. (1970), Shock waves in mathematicsl models of the aorta, J. Appl. Mech. 37, 34.CrossRefGoogle Scholar
  14. 14.
    Skalak, R. (1966), Wave propagation in blood flow in biomechanics, Proc. Symp. Appl. Mech. Div. ASME, Y.C. Fung, Ed.Google Scholar
  15. 15.
    Tait, R.J., Moodie, T.B. and Haddow, J.B. (1981), Wave propagation in a fluid-filled elastic tube, Acta Mechanica, 38, 71.CrossRefGoogle Scholar
  16. 16.
    Teipel, I. (1973), Michtlineare wellenausbreitungsvorgänge in elastischen leitungen, Acta Mechanica, 16, 93.CrossRefGoogle Scholar
  17. 17.
    Witzig, K. (1914), Uber erzwungene Wellenbewegungen zäher, inkompressibler Flussigkeiten in elastischen Röhren, Inaugural Dissertation, Universitat Bern, K.J. Wyss, Bern.Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • J. B. Haddow
    • 1
  • T. B. Moodie
    • 1
  • R. J. Tait
    • 2
  1. 1.Department of Mechanical EngineeringCanada
  2. 2.Department of MathematicsUniversity of Alberta EdmontonAlbertaCanada

Personalised recommendations