Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 270))

Abstract

The pioneer of the quantitative study of the flow of blood through tubes was Poissuille, who was both physicist and physician. He modelled the flow of blood through the circulation by investigating the flow of water through rigid cylindrical tubes. He was forced to use water as he was unable to prevent the blood from clotting, and he was fortunate in his substitution because blood shows non-Newtonian behaviour, which will be dealt with elsewhere in this volume. He was also fortunate in using rigid tubes. The real blood vessels have complicated non-cylindrical geometries, and are highly extensible and non-linear. If he had used blood and realistic models of blood vessels, it is unlikely he would have produced the clear cut results he did.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McDonald, D.A., Blood flow in arteries, Edward Arnold Ltd., London, 1974.

    Google Scholar 

  2. Caro, C.G., Pedley, T.J., Schroter, R.C. and Seed, W.A., The Mechanics of the circulation. Oxford University Press, Oxford, 1978.

    Google Scholar 

  3. Iberall, A.S., Anatomy and steady flow characteristics of the arterial system, Math. Bioscience 1, 375–395, 1967.

    Article  Google Scholar 

  4. d’Arcy, W. Thompson, On growth and form, MacMillan, London, pp. 948–957, 1945.

    Google Scholar 

  5. Bloom, W. and Fawcett, D.W., A textbook of histology. W.B. Saunders, Philadelphia, 1975.

    Google Scholar 

  6. Benninghoff, A., Blutgafasse and Herz in ‘Handbuch der Microkopischen Anatomie’, Springer Verlag, Berlin, Vol. Vl/1, p. 1–225, 1930.

    Google Scholar 

  7. Wolinsky, H. and Glagov, S., A lamellar unit of aortic medial structure and function in mammals. Circulation Res. 20, 99–111, 1967.

    Article  CAS  PubMed  Google Scholar 

  8. Burton, A.C., Physical principles of circulatory phenomena. Handbook of physiology, Amer. Physiol. Soc., Washington, Vol 1/2, pp. 85–106, 1962.

    Google Scholar 

  9. Folkow, B. and Neil, E., Circulation, Oxford University Press, London, 1971.

    Google Scholar 

  10. Learoyd, B.M. and Taylor, M.G., Alteration with age in the viscoelastic properties of human arterial wall. Circulation Res. 18, 278–291, 1966.

    Article  CAS  PubMed  Google Scholar 

  11. Fung, Y.C., Biomechanics, Mechanical properties of living tissues, Springer Verlag, New York, 1981.

    Google Scholar 

  12. Tanaka, T.T. and Fung, Y.C., Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J. Biomech. 7, 357–370, 1974.

    Article  CAS  PubMed  Google Scholar 

  13. Collins, R. and Hu, W.C., Dynamic deformation experiments on aortic tissue, J. Biomech. 5, 333–337, 1972.

    Article  CAS  PubMed  Google Scholar 

  14. Wiederhielm, C.A., Distensibility characteristics of small blood vessels. Fed. Proc. 24, 1075–1084, 1965.

    CAS  PubMed  Google Scholar 

  15. Patel, D.J. and Fry, D.L., The elastic symmetry of arterial segments in dogs. Circ. Res. 24, 1–8, 1969.

    Article  CAS  PubMed  Google Scholar 

  16. Patel, D.J. and Vaishnav, R.N., Basic hemodynamics and its role in disease processes, University Park Press, Baltimore, 1980.

    Google Scholar 

  17. Lawton, R.W., The thermoelastic behaviour of isolated aortic strips of the dog. Circ. Res. 3, 403–408, 1954.

    Article  Google Scholar 

  18. Carew, T.E., Vaishnav, R.N. and Patel, D.J., Compressibility of the arterial wall. Circulation Res. 22, 61–68, 1968.

    Article  Google Scholar 

  19. Bergel, D.H., The properties of blood vessels. In: ‘Biomechanics — it’s foundations and objectives’ eds. Fung, Y.C., Persone N. and Anliker M. Prentice-Hall, New Jersey, pp. 105–139, 1972.

    Google Scholar 

  20. Veronda, D.R. and Westmann, R.A., Mechanical characterisation of skin finite deformations. J. Biomech. 3, 111–124, 1970.

    Article  CAS  PubMed  Google Scholar 

  21. Stark, H.L. and Al-Haboubi, A., The relationship of width, thickness, volume and load to extension for human skin, In Vitro, Engineering in medicine 9, 179–183, 1980.

    Article  Google Scholar 

  22. Tickner, E.G. and Sacks, A.H., A theory for the static elastic behaviour of blood vessels. Biorheology 4, 151–168, 1967.

    CAS  PubMed  Google Scholar 

  23. Wolinsky, H. and Glagov, S., Structural basis for the static mechanical properties of the aortic media. Circulation Res. 14, 400–413, 1964.

    Article  CAS  PubMed  Google Scholar 

  24. Carton, R.W., Dainauskas, J. and Clark, J.W., Elastic properties of single elastic fibres. J. Appl. Physiol. 17, 547–551, 1962.

    CAS  PubMed  Google Scholar 

  25. Jenkins, R.B. and Little, R.W., A constitutive equation for parallel fibred elastic tissue. J. Biomech. 7, 397–402, 1974.

    Article  CAS  PubMed  Google Scholar 

  26. Gosline, J.N., The physical properties of elastic tissue. In: ‘International review of connective tissue research’, eds. Hall D.A. and Jackson, D.S. Academic Press, London Vol. 7. pp. 211–250, 1976.

    Google Scholar 

  27. Haut, R.C. and Little, R.W., A constitutive equation for collagen fibres. J. Biomech. 5, 289–298, 1972.

    Article  Google Scholar 

  28. Dobrin, P.B. and Rovick, A.A., Influence of vascular smooth muscle on contractive mechanics and elasticity of arteries. Amer. J. Physiol. 217, 1644–1651, 1969.

    CAS  PubMed  Google Scholar 

  29. Harkness, M.L.R., Harkness, R.D. and MacDonald, D.A., The collagen and elastin content of the arterial wall in dogs. Proc. Roy. Soc. B. 146, 541–551, 1957.

    Article  CAS  Google Scholar 

  30. McCrum, N.G. and Dorrington, K.L., The bulk modulus of solvated elastin. J. Mat. Sci. 11, 1367–1368, 1976.

    Article  Google Scholar 

  31. Roach, M.R. and Burton, A.C., The reason for the shape of the distensibility curves of arteries, Can. J. Biochem. Phsiol. 35, 681–690, 1957.

    Article  CAS  Google Scholar 

  32. Hoffman, A.S., Grande, L.A., Gibson, P., Park, J.B., Daly, C.H., Borstein, P. and Ross, R., Preliminary studies on mechanochemical structure relationships in connective tissues using enzymolysis techniques, In: “Perspectives in biomedical engineering”, eds. Kenedi, R.M., MacMillan, London, pp. 173–176, 1973.

    Google Scholar 

  33. Patel, D.J., Janicki, J.S. and Carew, T.E., Static anisotropic elastic properties of the aorta in living dogs. Circulation Res. 25, 765–779, 1969.

    Article  CAS  PubMed  Google Scholar 

  34. Fung, Y.C., Stress-Strain history relations of soft tissue in simple elongation. In: ‘Biomechanics — its foundations and objectives’ eds. Fung, Y.C. Perrone, N. and Anliker, M. Prentice-Hall, New Jersey, pp. 181–208, 1972.

    Google Scholar 

  35. Vito, R., A note on arterial elasticity. J. Biomechs. 1, 3–12, 1973.

    Google Scholar 

  36. Biot, M.A., Mechanics of incremental deformation. John Wiley, New York, 1965.

    Google Scholar 

  37. Bergel, D.H., The static elastic properties of the arterial wall. J. Physiol. 156, 458–469, 1961.

    CAS  PubMed  Google Scholar 

  38. Patel, D.J. and Fry, D.L., Longitudinal tethering of arteries in dogs. Circ. Res. 19, 1011–1021, 1966.

    Article  CAS  PubMed  Google Scholar 

  39. Fung, Y.C., Rheology of blood vessels. In: ‘microcirculation’ eds. Kaley, G. and Altura, B.M. University Park Press, Baltimore, Vol. 1 pp. 299–324, 1977.

    Google Scholar 

  40. Hardung, V., Die bedentung der anisotropie and inhomogenitat bei der bestummung der elastizitat der blutgefasse II. Angiologica 1, 185–196, 1964.

    CAS  PubMed  Google Scholar 

  41. Bergel, D.H. and Schultz, D.L., Arterial elasticity and fluid dynamics. In: ‘Progress in biophysics and molecular biology’. eds. Butler, J.A.V. and Noble, D. Pergamon Press, Oxford 22, 3–36, 1971.

    Google Scholar 

  42. Green, A.E. and Adkins, J.E., Large elastic deformations and non-linear continuum mechanics, Clarendon Press, Oxford, 1960.

    Google Scholar 

  43. Green, A.E. and Zerna, W., Theoretical Elasticity. Clarendon Press, Oxford, 1954.

    Google Scholar 

  44. Vaishnav, R.N., Young, J.T., Janicki, J.S. and Patel, D.J., Non linear anisotropic elastic properties of the canine aorta. Biophys. J. 12, 1008–1027, 1972.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Fung, Y.C., Fronek, K and Patitucci, P., Pseudo elasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237, H620 - H631, 1979.

    CAS  PubMed  Google Scholar 

  46. Rachev, A.I., Effects of transmural pressure and muscular activity on pulse waves in arteries. ASME Journal of Biomechanical Engineering 102, 119–123, 1980.

    Article  CAS  Google Scholar 

  47. Roy, C.S., The elastic properties of the arterial wall, J. Physiol. 3, 125–159, 1880.

    Google Scholar 

  48. Flügge, W., Viscoelasticity. 2nd Ed. Springer-Verlag, Berlin, 1975.

    Book  Google Scholar 

  49. Lanczos, C., Applied analysis. Prentice-Hall, New Jersey, 1956.

    Google Scholar 

  50. Ferry, J.D., Viscoelastic properties of polymers. John Wiley, New York, 1970.

    Google Scholar 

  51. Alfrey, T., Mechanical behaviour of high polymers. Interscience, New York, 1948.

    Google Scholar 

  52. Barbenel, J.C., Evans, J.H. and Finlay, J.B., Stress-strain-time relations for soft connective tissues. In: ‘Perspectives in biomedical engineering’. eds. Kenedi, R.M., Macmillan, London, pp. 165–172, 1973.

    Google Scholar 

  53. Tobolsky, A.V., Properties and structure of polymers, John Wiley, New York, 1960.

    Google Scholar 

  54. Olofsson, B., Comparison of stress-activated models and linear spectral models for visco-elasticity. Rheol. Acta. 13, 78–85, 1974.

    Article  Google Scholar 

  55. Green, A.E. and Rivlin, R.S., The mechanics of non-linear materials with memory. Arch. Rat. Mech. Anal. 1, 1–21, 1957.

    Article  Google Scholar 

  56. Green, A.E. and Rivlin, R.S., The mechanics of non-linear materials with memory. Arch. Rat. Mech. Anal. 4, 387–404, 1960.

    Article  Google Scholar 

  57. Lockett, F.J., Non-linear viscoelastic solids. Academic Press, London, 1972.

    Google Scholar 

  58. Cheung, J.B. and Hsiao, C.C., Non-linear anisotropic viscoelastic stresses in blood vessels. J. Biomechics. 5, 607–619, 1972.

    Article  CAS  Google Scholar 

  59. Young, J.T., Vaishnav, R.N. and Patel D.J., Non-linear anisotropic viscoelastic properties of canine arterial segments. J. Biomechs. 10, 549–559, 1977.

    Article  CAS  Google Scholar 

  60. Chu, B.M. and Blatz, P.J., Cumulative microdamage models to describe the hysteresis of living tissue. Ann. Biomed. Engng. 1, 204–211, 1972.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Wien

About this chapter

Cite this chapter

Barbenel, J.C. (1983). The Arterial Wall. In: Rodkiewicz, C.M. (eds) Arteries and Arterial Blood Flow. International Centre for Mechanical Sciences, vol 270. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4342-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4342-1_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81635-6

  • Online ISBN: 978-3-7091-4342-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics