Blood Rheology and Its Implication in Flow of Blood

  • Daniel Quemada
Part of the International Centre for Mechanical Sciences book series (CISM, volume 270)


Rheological behaviour of blood is studied as dominated by plasma viscosity, hematocrit and Red Cell properties, namely aggregability and deformability. Quantitative models for highly concentrated suspensions, which exhibit shear thinning, thixotropy and viscoelasticity, are discussed. Annular (two-phase) flow models are developped for analysing blood flow in narrow vessels. Some examples in clinical application are given.


Shear Rate Wall Shear Stress Apparent Viscosity Concentrate Suspension Plasma Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANCZUROWSKI E., MASON S.G. (1967), The kinetics of flowing dispersions. III. Equilibrium orientations of rods and discs. J.Colloid Interface Sci. 23, 533–546.Google Scholar
  2. ARRHENIUS S. (1917), The viscosity of solutions. Biochem.J. 11, 112–113.PubMedGoogle Scholar
  3. BARBEE J.H. and COKELET G.R. (1971), The Farhaeus effect. Microvasc.Res. 3, 1–21.Google Scholar
  4. BATCHELOR G.K. and GREEN J.T. (1972), The determination of the bulk stress in a suspension of spherical particles to order c2. J.Fluid.Mech., 56, 401–427.Google Scholar
  5. BAYLISS L. (1952), Rheology of blood and lymph, In: Deformation and Flow in Biological Systems, A. Frey-Wissling (Ed), North Holland Publ., Amsterdam. Chap. 6, pp 355–415.Google Scholar
  6. BERGEL D.H. (1972), The rheology of human blood vessels. In: Biomechanics: its foundations and objectives. Y.C. Fung, N. Perrone and M. Anliker (Eds) Prentice Hall, Inc. New-Jersey, pp. 63–103.Google Scholar
  7. BLOCH E.H. (1962), A quantitative study of the hemodynamics in the living microvascular system. Amer.J.Anatomy, 110, 125–153.Google Scholar
  8. BORN G.V.R., MELLING A. and WHITELAW J.H. (1978), Laser doppler microscope for blood velocity measurements. Biorheology, 15, 163–172.PubMedGoogle Scholar
  9. BRINKMAN H.C. (1952), The viscosity of concentrated suspensions and solutions. J.Chem.Phys., 20, 571.Google Scholar
  10. BROCHARD F. (1977), Une bulle dégonflée: le globule rouge. La Recherche 75, 174–177.Google Scholar
  11. BROOKS D.E., GOODWIN J.W. and SEAMAN G.V.F. (1970), Interactions among erythrocytes under shear. J.Appl.Physiol., 28, 172–177.PubMedGoogle Scholar
  12. BROOKS D.E. and SEAMAN G.V.F. (1971), Role of mutual cellular repulsions in the rheology of concentrated red blood cell suspensions. In: Theoretical and Clinical Hemorheology, H.H. Hertert and A.L. Copley (Eds), Springer Verlag, Berlin, pp 127–135.Google Scholar
  13. BROOKS D.E., GOODWIN J.W., SEAMAN G.V.F. (1974), Rheology of erythrocyte suspensions: electrostatic factors in the dextran-mediated aggregation of erythrocytes. Borheology 11, 69–77.Google Scholar
  14. BROOKS D.E. (1976) Red cell interactions in low flow states. In: Micro-circulation, vol. I, J. Grayson and W. Zingg (Eds), Plenum Press, New-York PP 33–52.Google Scholar
  15. BUGLIARELLO G., KAPUR C., HSIAO G. (1965), The profile viscosity and others characteristics of blood flow in a non-uniform shear field. In: Proc.Four:Int.Congr.on Rheology, 4, A.L. Copley (Eds), Interscience, N.Y., pp 351–370.Google Scholar
  16. CHIEN S., USAMI S., JAN K.M. (1971b), Fundamental determinants of blood viscosity. In The Symposium on Flow, Dowdell ( Ed. ), Pittsburg.Google Scholar
  17. CHIEN S., LUSE S.A., JAN K.M., USAMI S., MILLER L.H. and FREMOUNT H. (1971c),Effects of macromolecules on the rheology and ultrastructure of red cell suspensions. In: Proc.6th Europ.Con-f.on Microcirculation, Karger, Basel (Eds.), 29–34.Google Scholar
  18. CHIEN S., USAMI S., DELLENBACK R.J., BRYANT C.A. and GREGERSEN M.I. (1971d) Change of erythrocyte deformability during fixation in acetaldehyde. In: Theoretical and Clinical Hemorheology, Hartett H.H. and Copley A.L. (Eds), Berlin, Springer-Varlag, pp 136–143.Google Scholar
  19. CHIEN S. (1972), Present state of blood rheology. In: Hemodilution: Theoretical Basis and Clinical Applications. Messmer K., Schmid-Schönbein H., S. Karger (Eds.), Basel, 1–40.Google Scholar
  20. CHIEN S., KING R.G., SKALAK, R., USAMI S. and COPLEY A.L. (1975), Viscoelastic properties of human blood and red cell suspensions. Biorheology, 12, 341–346.PubMedGoogle Scholar
  21. CHIEN S., (1979), Blood rheology. In: Quantitative Cardiovascular Studies. Hwang N.H.C., Gross D.R., Patel D.J. (Eds), Univ.Park Press, Baltimore (USA), 241–287.Google Scholar
  22. COKELET G.R., MERRILL F.W., GILLILAND E.R. and SHIN H. (1963). The rheology of human blood measurement near and at zero shear rate. Trans.Soc. Rheol., 7, 303–317.Google Scholar
  23. COKELET G.R. (1972) Rheology of blood. In: Biomechanics, its Foundations and Perspectives, Y.C. Fung, N. Perrone and M. Anliker (Eds), Prentice Hall, Inc., Englewood Cliffs, N.J., pp 63–103.Google Scholar
  24. COKELET G.R. (1976) Macroscopic rheology and tube flow of human blood. In: Microcirculation Vol 1. J. Grayson and W. Zingg (Eds), Plenum Press. New York, pp 9–32Google Scholar
  25. COPLEY A.L., HUANG C.R., KING R.G. (1973) Rheogoniometric studies of whole human blood at shear rates from 1000 to 0.0009 sec-1. Part 1 Experimental findings. Biorheology 10, 17–22.PubMedGoogle Scholar
  26. COPLEY A.L., HUANG C.R., KING R.G. (1973) Part II. Mathematical interpretation. Biorheology, 10, 23–28.PubMedGoogle Scholar
  27. COPLEY A.L., KING R.G., CHIEN S., USAMI S., SKALAK R. and HUANG C.R(1975) Microscopic observations of viscoelasticity of human blood in steady and oscillatory shear. Biorheology 12, 257–263.Google Scholar
  28. COPLEY A.L., KING R.G., HUANG C.R. (1976) Erythrocyte sedimentation of human blood at varying shear rates. Biorheology, 13, 281–86.PubMedGoogle Scholar
  29. COULTER Jr. N.A., MEGHA Singh (1971), Frequency dependence of blood viscosity in oscillatory flow. Biorheology, 8, 115–124PubMedGoogle Scholar
  30. CROSS M.M. (1965) Rheology of Non-Newtonian fluids: A new flow equation for pseudoplastic systems. Colloid Sci 20, 417–437Google Scholar
  31. DEVENDRAN T. and SCHMID-SCHONBEIN H., (1975) Axial Concentration in Narrow Tube Flow for Various RBC Suspensions as Function of wall shear stress. Pflügers Arch. 355: R20Google Scholar
  32. DINTENFASS L., (1964), Rheology of the packed red blood cells containing haemoglobins AA, SA, SS. J. Lab. Clin. Med. 64, 594–603.PubMedGoogle Scholar
  33. DINTENFASS L., BURNARD E.D. (1966a) Effect of hydrogen ion concentration on in vitro viscosity of packed red cells and blood at high hematocrits. Med. J. Aust. 1, 1072–1078.PubMedGoogle Scholar
  34. DINTENFASS L., JULLIAN D.G. and MILLER G. (1966b), Viscosity of Blood in normal Subjects and in Patients Suffering from Coronary Occlusion and Arterial Thrombosis. Am. Heart J., 71, 587–592.PubMedGoogle Scholar
  35. DINTENFASS L., (1968), Internal viscosity of the red cell and a blood viscosity equation. Nature, Lond. 219, 956–957.Google Scholar
  36. DINTENFASS L., (1969), The internal viscosity of the Red cell and the structure of the red membrane. Considerations of the liquid Crystalline structure of the red cell interior and membrane from rheological data. Mol.Cryst. 8, 101–107.Google Scholar
  37. DINTENFASS L. (1971) Blood Microrheology Viscosity Factors in Blood Flow. Ischaemia and Thrombosis- Butterworths. London.Google Scholar
  38. DINTENFASS L. and KAMMER S. (1977) Plasma viscosity in 615 subjects. Effect of Fibrinogen, Globulin, and Cholesterol in Normals, Peripheral vascular.Disease Retinopathy and Melanoma. Biorheology, 14, 247–251.PubMedGoogle Scholar
  39. DINTENFASS L. (1977) Blood Viscosity factors in severe non diabetic and diabetic retinopathy. Biorheology, 14, 151–157.PubMedGoogle Scholar
  40. DINTENFASS L. (1979) Clinical applications of blood viscosity factors and functions: especially in the cardiovascular disorders. Biorheology 16, 69–84.PubMedGoogle Scholar
  41. DORMANDY J.A. and EDELMAN J.B. (1973) High blood viscosity. An achological factor in deep venous thrombosis. British Journal of Surgery, 60, 187–189.PubMedGoogle Scholar
  42. DUFAUX J., QUEMADA D., MILLS P. (1980). Velocity profiles measurements by Laser-Doppler velocimetry (LDV) in plane capillaries. Comparison with theoretical profiles from a two fluid model. In: Rheology, Vol 3. G. Astarita, G. Marruci and L. Nicolais (eds) Plenum Press, NY; pp 561–566Google Scholar
  43. DIX F.J. and SCOTT-BLAIR G.W. (1940) On the flow of suspensions through narrow tubes. J. Appl. Physics. 11. 574–581.Google Scholar
  44. FLAUD P., QUEMADA D. (1980) Role des effets non newtoniens dans l’écoulement pulsé d’un fluide dans un tuyau viscoelastique. Revue Phys. Appl. 15, 223–233Google Scholar
  45. FISCHER Th. M., SCHMID-SCHONBEIN H., STOHR M., (1978) Mechanical behaviour of human red blood cells in the shear field of viscous dextran solution. In: Cardiovascular and Pulmonary Dynamics. Jaffrin M.Y. ( ed ), Editions Inserm Paris pp. 243–256.Google Scholar
  46. FAHRAEUS R. (1929) The suspension stability of the blood. Physiol. Rev. 9. 241–274Google Scholar
  47. FAHRAEUS R. and LINDQVIST T. (1931) The viscosity of the blood in narrow capillary tubes. Amer. J. Physiol. 96: 562–568Google Scholar
  48. GELIN L.E. (1961) Disturbances of the flow properties of blood and its counter action in surgery. Acta Chirurgia, Scandinavia, 122, 287–295.Google Scholar
  49. De GENNES P.G. (1979). Conjectures on the transit!on from Poiseuille to plug flow in suspensions. J. de Physique 40, 783–787.Google Scholar
  50. GILLESPIE T. (1963) The effect of Aggregation and Liquid Penetration on the viscosity of dilute suspensions of spherical particles. J.Colloid Sci. 18, 32–40.Google Scholar
  51. GOLDSMITH H.L., MASON S.G. (1967) “The microrheology of dispersions”. In: Rheology: Theory and Applications. Eirich, (Ed) Acad.Press, N.Y. pp. 85–250.Google Scholar
  52. GOLDSMITH H.L., (1971) Deformation of human red cells in tube flow. Biorheology 7, 235–242.PubMedGoogle Scholar
  53. GOLDSMITH H.L., (1968) The microrheology of red blood cell suspensions. J. Gen. Physiol. 52, 5–28.PubMedCentralPubMedGoogle Scholar
  54. GOLDSMITH H.L., (1973) The microrheology of human erythrocyte suspensions In: Proceed. XIIIe Int. Cong. Theor. and Appl. Mech. E. Becker and G.K. Mikhailov (eds), Springer Verlag, Berlin, pp 85–103.Google Scholar
  55. GREGERSEN, M.I., USAMI S., CHIEN S. and DELLENBACK R.J. (1967) Characteristics of torque-time records on heparinized and defibrinated elephant, human and goat blood at low shear rates (0.01 sec-1): effects of fibrinogen and Dextran (Dx 375). Bibl. anat. 9: 276–281.PubMedGoogle Scholar
  56. HARKNESS W. (1971) The viscosity of human blood plasma. Its measurement in health and disease. Biorheology. 8, 171–193.PubMedGoogle Scholar
  57. HAYNES R.H. and BURTON A.C. (1959) Role of the non Newtonian behavior of blood in hemodynamics. Amer. J. Physiol. 56, 197–943.Google Scholar
  58. HAYNES R.H. (1962) The viscosity of erythrocyte suspension. Biophysics 2, 95–102Google Scholar
  59. HEALY J.C., JOLY M. (1975) Rheological behaviour of blood in transient flow. Biorheology 12, 335–340.PubMedGoogle Scholar
  60. HOARE E.M., BARNES A.J. and DORMANDY J.A. (1976) Abnormal Blood Viscosity in Diabetes Mellitus and Retinopathy. Biorheology, 13, 21–25.PubMedGoogle Scholar
  61. HOUWINK R. (1949) Macromolecular sols without electrolyte character. In: Colloid Science, II, Reversible Systems, 153. Kruyt H.R. (Eds) Elese vier Publ., Amsterdam.Google Scholar
  62. HUANG C.R., SISKOVIC N., ROBERTSON R.W., FABISIAK W., SMITHERBERG E.H., COPLEY A.L. (1975), Quantitative characterization of whole human blood. Biorheology 12, 279–282.PubMedGoogle Scholar
  63. ISOGAI Y., ICHIBIA K., IIDA A., CHIKATSU I. and ABE M. (1971), Viscosity of blood and plasma in various diseases. In: Theoretical and clinical hemorheology, Hartett H.H. and Copley A.L. (Eds), Springer-Verlag, ( Berlin ) pp 136–143.Google Scholar
  64. KARNIS A., GOLDSMITH H.L. and MASON S.G. (1966), The kinetics of flowing dispersions I: Concentrated suspensions of rigid particles. J.Coll. Interface Sci., 22, 531–553.Google Scholar
  65. KELLER J.B., RUBENFELD L.A. and MOLYNEUX J.E. (1967). Extremum principles for slow viscous flows with applications to suspensions. J. Fluid. Mech., 30, 97–125.Google Scholar
  66. KELLOG F. and GOODMAN J.R. (1960), Viscosity of blood myocardial infarction. Circulation Research, 8, 972–978.Google Scholar
  67. KLOSE H.J., VOLGER B., BRECHTELSBAUER H., HERNICH I. and SCHMID-SCHONBEIN H. (1972). Microrheology and light transmission of blood I. The photometric quantification of red cell aggregation and red cell orientation. Pflürers Arch., 333, 126–132.Google Scholar
  68. KRIEGER I.M. and ELROD H. (1953). Direct determination of the flow curves of non-newtonian fluids II: Shearing rate in the concentric cylinder viscometer. J.Appl.Phys., 24, 134–140.Google Scholar
  69. KRIEGER I.M. (in Surface and Coatings Related to Paper and Wood. R. Marchessault, C. Skaar ed. Syracuse Univ.Press (1967)) and T.J.DOUGHERTY, Some problems in the theory of colloids (Ph.D.Thesis, Case Inst.Techn. (1959)).Google Scholar
  70. KRIEGER I.M. (1963), A dimensional approach to colloid rheology. Trans. Soc.Rheol., 7, 101–109.Google Scholar
  71. KRIEGER I.M. and DOUGHERTY T.J. (1959). A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans.Soc.Rheol., 3, 137–152.Google Scholar
  72. LANDEL R.F., MOSER B.G. and BAUMAN A.J. (1965), Rheology of concentrated suspensions. Effect of a surfactant. In: Proceed. IVth Intern.Cong. on Rheology, Part 2, Lee E.H. (Eds), Interscience, N.Y., pp 663–693.Google Scholar
  73. LESSNER A., ZAHAVI J., SILBERBERG A., FREI E.H., and DREYFUS P. (1971) The viscoelastic properties of whole blood. In: Theoretical and Clinical Hemorheology; H.H. Hartert and A.L. Copley (Eds.) Springer-Verlag. New York, pp. 194–205Google Scholar
  74. LINDSLEY H., TELLER D., NOONAN B., PETERSON M. and MANNIK M. (1973). Hyperviscosity Syndrome in Multiple Myeloma. A reversible, concentration dependent Aggregation of the Myeloma Protein. The Amer of Medicine, 54, 682–688.Google Scholar
  75. MARON S.H. and SISKO A.W. (1957) Application of Ree-Eyring generalized flow theory to suspensions of spherical particles: II. Flow in low shear region. J. Colloid.Sci., 12, 99–107.Google Scholar
  76. MAUDE A.D. and WHITMORE R.L. (1958) Theory of the Blood Flow in Narrow Tubes. J. Appl.Physiol. 12: 105–113.PubMedGoogle Scholar
  77. MATSUDA T. and MURAKAMI M. (1976). Relationship between fibrinogen and blood viscosity. Thrombosis Research, Suppl.II, 8, 25–33.Google Scholar
  78. MERRILL I.W., MARGETTS W.G., COKELET G.R., BRITTEN A., SALZMANE.W., PENNELL R.B. and MELIN M. (1955) Influence of plasma proteins on the rheology of human blood. In: Proc.4th Inter.Cong.on Rheologg. A.L. Copley (ed.) Pt, 4, Interscience ( Wiley ), New York. pp 601–12.Google Scholar
  79. MERRILL E.W., PELLETIER G.A. (1967) Viscosity of human blood: transition from newtonian to non-newtonian. J. Appl. Physiol. 23, 178–182.PubMedGoogle Scholar
  80. MERRILL E.W., (1969) Rheology of blood. Physiol.Rev. 49: 863–888.Google Scholar
  81. MIDDLEMAN S. (1972) Transport phenomena in the cardiovascular system. Wiley-Interscience, N.Y. p. 91.Google Scholar
  82. MILLER L.H., USAMI S. and CHIEN S. (1971) Alteration in the rheologic properties of Plasmodium Knowlesi. infected red cells. A possible mechanism for capillary obstruction. J.Clin.Invest. 50, 1451–1455.PubMedCentralPubMedGoogle Scholar
  83. MILLS P., QUEMADA D. and DUFAUX J. (1980) An optical method for studying RBC orientation and aggregation in a Couette flow of Blood Suspension. In: Rheology. G. Astarita, G. Marrucci, L. Nicolais (Eds) Plenum Press NY 1980. pp. 567–572.Google Scholar
  84. MOONEY M. (1951) The viscosity of a concentrated suspension of spherical particles. J.Colloid ScL. 6, 162–170.Google Scholar
  85. MOORE F. (1959) (Cited by Cheng et Evans, 1965 ). Trans.Brit.Ceram.Soc. 58, 470–492.Google Scholar
  86. OSTWALD W., AUERBACH R. (1926) Uber die Viscosität kolloider Lösungen im Struktur, Laminar. und Turbulenzgebiet. Kolloid Z. 38, 261–280.Google Scholar
  87. PALMER A.A. (1968) Some aspects of plasma skimming. In: Hemorheology. A.L. Copley (Eds.) Pergamon Press, Oxford. pp. 391–400.Google Scholar
  88. PRAGER S. (1963). Diffusion and viscous flow in concentrated suspensions. Physica 29, 129–139 (1963).Google Scholar
  89. QUEMADA D. (1976a). Red cell Aggregation and Thrombus formation: a rheological approach. Proceedings of the 16th International Congress of Hematology: Topics in Hematology. KYOTO, 1976. Excerpta Medica (Amsterdam) 415, 733–736.Google Scholar
  90. QUEMADA D. (1976b). Some new results in rheology of concentrated disperse systems and blood. In: Proceedings of the VIIth International Congress on Rheology. J. Kubat (ed.) Gothenburg, 1976, pp. 628–629.Google Scholar
  91. QUEMADA D. (1977) Rheology of concentrated disperse system and minimum energy dissipation principle. I. Viscosity-concentration relationship. Rheol. Acta 16, 82–94.Google Scholar
  92. QUEMADA D. (1978 a) Rheology of concentrated disperse systems, II. A model for non newtonian shear viscosity in steady flows. Rheol. Acta 17, 632–642.Google Scholar
  93. QUEMADA D. (1978b) Rheology of concentrated disperse systems. III. General features of the proposed non-newtonian model. Comparison with experimental data. Rheol. Acta 17, 643–653.Google Scholar
  94. QUEMADA D., DUFAUX J., MILLS P. (1980) A two-fluid model for highly concentrated suspension flow through narrow tubes and slits: velocity profiles, apparent fluidity and wall layer thickness. In: Rheology, Vo1. 3, G. Astarita, G. Marrucci and L. Nicolais (eds) Plenum Press, NY pp. 633–638Google Scholar
  95. QUEMADA D. (1981). A rheological model for studying the hematocrit dependence of red cell-red cell and red cell-protein interactions in blood Biorheology 18, 501–516.PubMedGoogle Scholar
  96. QUEMADA D., MILLS P., DUFAUX J., SNABRE P., LAMBERT M. (1981) Sedimentation effects in viscometric measurements. In: Hemorheology and Diseases. J.F. Stoltz and P. Drouin (Eds). Doin editeurs. Paris. pp 31–41.Google Scholar
  97. REE T., EYRING H. (1955) Theory of non-newtonian flow. I. Solid Plastic System. J.Appl.Phys., 26, 793–804.Google Scholar
  98. ROBINSON J.V. (1949) The viscosity of suspensions of spheres. J. Phys. and Colloid Chem. 53, 1042–1056.Google Scholar
  99. ROSCOE R. (1952) The viscosity of suspensions of rigid spheres. Brit. J. Appt. Phys. 3, 267–269.Google Scholar
  100. RUCKENSTEIN E. and MEWIS J. (1973) Kinetics of Structural Changes in Thixotropic Fluids. Colloid and Interface Sci 44, 532–541Google Scholar
  101. SCHMID-SCHONBEIN H., WELLS R.E., GOLDSTONE J. (1971) Fluid drop-like behaviour of erythrocytes. Disturbance in pathology and its quantification. Biorheology 7, 227–234.PubMedGoogle Scholar
  102. SCHMID-SCHONBEIN H., WELLS R.E. (1971) Red cell aggregation and cell deformation: their influence on blood rheology in health and disease. In: Theoretical and Clinical Hemorheology, Hartet H.H. and Copley A.L. (Eds) Berlin, Springer-Verlag, pp. 348–355.Google Scholar
  103. SCHMID-SCHONBEIN H., GALLASCH G., VOLGER E., KLOSE H.J. (1973) Microrheology and protein chemistry of pathological red cell aggregation (blood sludge) studied in vitro. Biorheology 10, 213–227.PubMedGoogle Scholar
  104. SCHMID-SCHONBEIN H. (1975) Erythrocyte rheology and the optimization of mass transport in the microcirculation. Blood Cells 2, 285–306.Google Scholar
  105. SCHMID-SCHONBEIN H. (1976) Microrheology of erythrocytes, blood viscosity and the distribution of blood flow in the microcirculation. In: International Review of Physiology. Cardiovascular Physiology. A.C. Guyton and A.W. Cowley (Eds) University Park Press. Baltimore pp. 1–62Google Scholar
  106. SCHMID-SCHONBEIN H., FISCHER T., DRIESSEN G., RIEGER H.: Microcirculâtion In: Quantitative Cardiovascular Studies: Clinical and Research Applications of Engineering Principles, N.H.C. Hwang, D.R. Gross and D.J. Patel (eds) Univ. Park Press, Baltimore (1979), Chap. 8, 353.Google Scholar
  107. SCHOLZ P.M., KARIS J.H., GUMP F.E., KINNEY J.M. and CHIEN S. (1975) Correlation of blood rheology with vascular resistance in critically ill patients. J.appl.Physiol. 39, 1008–1011PubMedGoogle Scholar
  108. SCOTT BLAIR G.W. (1959). An equation for the flow of blood, plasma and serum through glass capillaries. Nature 183, 613–615.Google Scholar
  109. SEGRE G. and SILBERBERG A. (1962) Behavior of macroscopic rigid spheres in Poiseuille flow. J. Fluid Mech. 14, 115–135: 136–157Google Scholar
  110. SUTERA S.P. (1978) Red cell motion and deformation in the microcircula- tion. In: Cardiovascular and Pulmonary Dynamics. Jaffrin M.Y. Eds. Editions, Inserm Paris pp. 221–242.Google Scholar
  111. TAYLOR G. (1932) The viscosity of a fluid containing small drops of another fluid. Proc.Roy.Soc.(London) 138A, 41–45Google Scholar
  112. THOMAS H.W. (1963) The Wall Effect in Capillary Instruments, Biorheology 1: 41–56.Google Scholar
  113. THURSTON G.B. (1976) The viscosity and viscoelasticity of blood in small diameter tubes. Microvasc. Res. 11: 133–146PubMedGoogle Scholar
  114. THURSTON G.B. (1979a) Erythrocyte Rigidity as a Factor in Blood Rheology: Viscoelastic Dilatancy. J. of Rheology, 23, 703–719.Google Scholar
  115. THURSTON G.B. (1979b) Rheological parameters for the viscosity viscoelasticity and thixotropy of blood. Biorheology, 16, 149–162.PubMedGoogle Scholar
  116. USAMI S., CHIEN S. and GREGERSEN M.I. (1971). Viscometric Behavior of Young and Aged Erythrocytes. In: Theoretical and Clinical Hemorheology, Hartett H.H. and Copley A.L. (Eds) Springer-Verlag, Berlin, 136–143.Google Scholar
  117. VAND V. (1948) Viscosities of solutions and suspensions. J. Phys.Coll. Chem. 52, 277–299.Google Scholar
  118. VINCENT N.M., OLIVER D.R. (1977) Blood sedimentation at controlled shear rates. Biorheology, 14, 51–58.PubMedGoogle Scholar
  119. WEINBERGER C.B. and GODDARD J.D. (1974) Extensional flow behaviour of Polymer solutions and particle suspensions in a spinning motion. Intern. J. Multiphase Flow, 1, 465–486.Google Scholar
  120. WHITMORE R.L. (1967). A theory of blood flow in small vessels. J. Appt. Physiol., 22, 767–771.Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Daniel Quemada
    • 1
  1. 1.Laboratoire de Biorhéologie et d’Hydrodynamique PhysicochimiqueUNIVERSITE PARIS VII. 2Paris Cedex 05France

Personalised recommendations