Solution Procedures for Interface Problems in Acoustics and Electromagnetics

  • E. Stephan
Part of the International Centre for Mechanical Sciences book series (CISM, volume 277)


The main aim of this paper is to derive solution procedures for 2 and 3-dimensional interface problems governing the scattering of sound by a homogeneous medium and the scattering of time harmonic electromagnetic fields in air by metallic obstacles. Two ideas are developed. Ths first is a boundary integral procedure for the Helmholtz interface problem and for the eddy current problem (in three dimensions). The second idea is an asymptotic procedure for the scattering of time harmonic electromagnetic fields which applies for large conductivity and reflects the skin effect in metals.


Solution Procedure Boundary Integral Equation Pseudodifferential Operator Principal Symbol Interface Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Costabel, M., Stephan E., Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation, THD-preprint 593, Darmstadt 1981. To appear at Banach Center Publications.Google Scholar
  2. [2]
    Costabel, M. and Stephan E., Curvature terms in the asymptotic expansions for solutions of boundary integral equations on curved polygons, THD-preprint 673 Darmstadt (1982).Google Scholar
  3. [3]
    Costabel, M., Stephan E., Wendland W.L., On boundary integral equations of the first kind for the bi-Laplacian in a ploygonal plane domain, THD-preprint 670, Darmstadt 1982.Google Scholar
  4. [4]
    Folland, G.B., Introduction to Partial Differential Equations, Mathematical Notes 17, Princeton University Press, Princeton, N.J. 1976.Google Scholar
  5. [5]
    Grisvard, P., Boundary value problems in non-smooth domains, Univ. of Maryland, MD20742 Lecture Notes 19(1980).Google Scholar
  6. [6]
    Hariharan, S.I. and MacCamy, R.C., Integral equation procedures for eddy current problems, Journ. of Comp. Physics 45 (1982) 80–99.MATHMathSciNetGoogle Scholar
  7. [7]
    Hsiao, G. and MacCamy, R.C., Solutionsof boundary value problems by integral equations of the first kind, SIAM Review 15 (1973), 687–705.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    Hsiao, G. and Wendland, W.L., A finite element method for some integral equations of first kind, Journ. Math. Anal. and Appl. 58 (1977) 449–481.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Hörmander, L. Linear Partial Differential Operators, in Die Grundlehren der mathematischen Wissenschaften in Einzeldar- stellungen 116, Springer-Verlag, Berlin, Heidelberg, 1963.Google Scholar
  10. [10]
    Knauff, W. and Kress, R., On the exterior boundary value problem for the time harmonic Maxwell equations, Journ. Math. Anal. Appl. 72 (1979) 215–235.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    Koshlyakov, N.S., Smirnov, M.M. and Gliner, E.B., Differential Equations of Mathematical Physics, North-Holland Publishing Company, Amsterdam, 1964.MATHGoogle Scholar
  12. [12]
    Kress, R. and Roach, G.F., Transmission problems for the Helmholtz equation, J. Math. Phys. 19 (1978) 1433–1437.ADSCrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    Kupradse, W.D., Randwertaufgaben der Schwingungstheorie und Integralgleichungen, Deutscher Verlag der Wissenschaften, Berlin, 1956.MATHGoogle Scholar
  14. [14]
    MacCamy, R.C. and Stephan E., Solution procedure for three-dimensional eddy current problems. Carnegie-Mellon University, Techn. Report (1981), to appear.Google Scholar
  15. [15]
    MacCamy, R.C., and Stephan, E., A single layer potential method for three-dimensional eddy current problems, in Ordinary and Partial Differential Equations, Dundee (1982) (ed. by N.N. Everitt and B.D. Sleeman ), Lecture Notes in Mathematics, Springer-Verlag, Berlin (1982).Google Scholar
  16. [16]
    MacCamy, R.C. and Stephan, E., A skin effect approximation for eddy current problems, THD-preprint 679 Darmstadt (1982), to appear.Google Scholar
  17. [17]
    MacCamy, R.C. and Stephan, E., A boundary element method for an exterior problem for three-dimensional Maxwell’s equations, THD-preprint 681 Darmstadt (1982), to appear.Google Scholar
  18. [18]
    Magnus, W., Oberhettinger, F. and Soni, R.P., Formulas and Theo- rems for the Special Functions of Mathematical Physics, in Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 52, Springer-Verlag, New York (1966).Google Scholar
  19. [19]
    Müller, C., Foundations of the Mathematical Theory of Electro- magnetic Waves, Springer-Verlag, Berlin-Heidelberg-New York, 1969.CrossRefGoogle Scholar
  20. [20]
    Rellich, F., Über das asymptotische Verhalten der Lösungen von Au + Au = 0 in unendlichen Gebieten, Jahresbericht d. DMV 53 (1943) 57–65.MATHMathSciNetGoogle Scholar
  21. [21]
    Seeley, R., Pseudo-Differential Operators, CIME, Cremonese, Rome (1969) (coordinated by L. Nirenberg).Google Scholar
  22. [22]
    Stephan, E., A boundary element method for two-dimensional eddy current and scattering problems, to appear.Google Scholar
  23. [23]
    Stratton, I.A., Electromagnetic Theory, McGraw-Hill, New York, N.Y. 1941.Google Scholar
  24. [24]
    Wendland, W.L., Boundary element methods and their asymptotic convergence, in these Lecture Notes.Google Scholar
  25. [25]
    Werner, P., Zur mathematischen Theorie akustischer Wellenfelder,. Arch. Rat. Mech Anal. 6 (1960) 231–260.CrossRefMATHGoogle Scholar
  26. [26]
    Werner, P., Beugungsprobleme der mathematischen Akustik, Arch. Rat. Mech. Anal. 12 (1963) 115–184.CrossRefGoogle Scholar
  27. [1]
    L. LANDAU and E. LIFCHITZ, 1971, Mécanique des fluides. Moscow, Editions Mir.MATHGoogle Scholar
  28. [2]
    P. GERMAIN, 1973, Cours de mécanique des milieux continus. Masson et Cie., Editeurs.MATHGoogle Scholar
  29. [3]
    P.M. MORSE and K.U. INGARD, 1968, Theoretical Acoustics. Mc Graw-. Hill Book Company, New York.Google Scholar
  30. [4]
    P.E. DOAK, 1965, Journal of Sound and Vibration 2, 53–73. Analysis of internally generated sound in continuous materials: ( I) Inhomogeneous acoustic wave equations.Google Scholar
  31. [5]
    P.E. DOAK, 1971, Journal of Sound and Vibration 19, 211–225. On the interpedence between acoustic and turbulent fluctuating motion in moving fluid.ADSCrossRefMATHGoogle Scholar
  32. [6]
    P.E. DOAK, 1972, Journal of Sound and Vibration 25, 263–335. Analysis of internally generated sound in continuous materials: ( II) A critical review of the conceptual adequacy and physical scopes of existing theories of aerodynamic noise, with special reference to supersonic jet noise.Google Scholar
  33. [7]
    P.E. DOAK, 1973, Journal of Sound and Vibration 26, 91–120. Analy-sis of internally generated sound in continuous materials: ( III) The momentum potential field description of fluctuating fluid motion as a basis for a unified theory of internally generated sound.Google Scholar
  34. [8]
    B.T. CHU and L.S. KOVASZNAY, 1958, Journal of Fluid Mechanics 3, 494–514. Non-linear interactions in a viscous heat-conducting compressible gas.ADSCrossRefMathSciNetGoogle Scholar
  35. [9]
    M.J. LIGHTHILL, 1972, Journal of Sound and Vibration 24, 471–492. The fourth annual fairey lecture the propagation of sound through moving fluids.ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • E. Stephan
    • 1
  1. 1.Fachbereich MathematikTechnische Hochschule DarmstadtDarmstadtFed. Rep. Germany

Personalised recommendations