Boundary Value Problems Analysis and Pseudo-Differential Operators in Acoustics

  • Marc Durand
Part of the International Centre for Mechanical Sciences book series (CISM, volume 277)


It is well known that partial differential problems can be solved by using integrals (more or less singular). Moreover, since some years, such problems are tried to be solved by integral problems defined on the boundary of the concerned domain (P.J.T. Filippi1). Furthermore differential problems are not sufficient to account for many physical problems. In particular boundary conditions can often be integral.


Differential Operator Phase Function Elliptic Problem Singular Integral Equation Helmholtz Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    FILIPPI P.J.T., Layer potentials and acoustic diffraction, J.S.V., 54 (4), 1–29, 1977.MathSciNetGoogle Scholar
  2. 2.
    CHVEDELIDZE, B.V., Linear discontinuous boundary value problems in function theory, singular integral equations and some of its applications (in Russian), Tr. Tbilisk. Matem. In. la An Gruz, SSR, 23, 3–158, 1956.Google Scholar
  3. 3.
    HÖRMANDER, L., Fourier integral operators I, Acta Math., 127, 79–183, 1971.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    BONY, J.M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Anr.Sci.Ec.NOrm. Sup., 4th sery, 14, 209–246, 1981.MATHMathSciNetGoogle Scholar
  5. 5.
    VAINBERG, B.R.,Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations, Russ. Math. Surveys, 21 (3), 115–193, 1966.ADSCrossRefGoogle Scholar
  6. 6.
    CALDERON, A.P., Communication at the “Joint Symposium of the Russian and American mathematical Society”, Novisibirsk, 1963.Google Scholar
  7. 7.
    BOUTET DE MONVEL, L. Comportement d’un opérateur pseudo-différentiel sur une variété à bord, J. Anal. Math, 17, 241–304, 1966.CrossRefMathSciNetGoogle Scholar
  8. 8.
    BOUTET DE MONVEL, L. Boundary problems for pseudo-differential operators, Acta Mathematica, 126, 11–51, 1971.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    DURAND, M., Layer potentials and boundary value problems for the Helmholtz equation in the complement of a thin obstacle, to appear in Math. Meth. Appt. Sci.Google Scholar
  10. SEELEY, R.T. Topics in pseudo-differential operators, in Pseudo-Differential Operators, CIME, Edizioni Cremonese, Roma, 1969.Google Scholar
  11. 11.
    TREVES, F. Introduction to pseudo-differential and Fourier integral operators, vol. 1, Plenum Press, New-York, 1980.CrossRefGoogle Scholar
  12. 12.
    LIONS, J.L. and MAGENES, E. Problèmes aux limites non homogènes et applications, vol I, Dunod, Paris, 1968.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Marc Durand
    • 1
  1. 1.U.E.R. de MathématiquesUniversité de ProvenceMarseille Cedex 13France

Personalised recommendations