Advertisement

Wave Propagation Above Layered Media

  • Dominique Habault
Part of the International Centre for Mechanical Sciences book series (CISM, volume 277)

Abstract

This lecture is devoted to the study of the diffraction of a spherical wave by an absorbing plane.

Keywords

Surface Wave Acoustical Society Inverse Fourier Transform Acoustic Field Sound Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    B. VAN DER POL. 1935. Physica, n° 2, pp 843–853, Theory of the reflection of the light from a point source by a finitely, conducting flat mirror, with an application to radiotelegraphy.CrossRefGoogle Scholar
  2. 2.
    I. RUDNICK. 1947. Journal of the Acoustical Society of America, vol 19, n° 2, pp 348–356. The propagation of an acoustic wave along a boundary.ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    U. INGARD. 1951. Journal of the Acoustical Society of America, vol 23, n° 3, pp 329–335. On the reflection of a spherical sound wave from an infinite plane.ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    R.B. LAWHEAD and I. RUDNICK. 1951. Journal of the Acoustical Society of America, vol 23, n° 5, pp 546–549. Acoustic wave propagation along a constant normal impedance boundary.CrossRefGoogle Scholar
  5. 5.
    D.I. PAUL. 1959. Journal of Mathematics and Physics, pp 1–15. Wave propagation in acoustics using the saddle point method.Google Scholar
  6. 6.
    S.P. PAO and L.B. EVANS. 1971. Journal of the Acoustical Society of America, vol 49, ri 4, pp 1069–1075. Sound attenuation over simulated ground cover.ADSCrossRefGoogle Scholar
  7. 7.
    A.R. WENZEL. 1974. Journal of the Acoustical Society of America, vol 55, n° 5, pp 956–963. Propagation of waves along an impedance boundary.ADSCrossRefGoogle Scholar
  8. 8.
    W.K. VAN MOORHFM. 1975. Journal of Sound and Vibration, vol 45, n° 2, pp 201–208. Reflection of a spherical wave from a plane surface.Google Scholar
  9. 9.
    C.F. CHIEN and W.W. SOROKA. 1975. Journal of Sound and Vibration, vol 43, n°1, pp 9–20. Sound propagation along an impedance plane.ADSCrossRefMATHGoogle Scholar
  10. 10.
    T.F.W. EMBLETON, J.E. PIERCY, N. OLSON. 1976. Journal of the Acoustical Society of America, vol 59, n° 2, pp 267–277. Outdoor sound propagation over ground of finite impedance.ADSCrossRefGoogle Scholar
  11. 11.
    S.I. THOMASSON. 1976. Journal of the Acoustical Society of America, vol 59, no 4, pp 780–785. Reflection of waves from a point source by an impedance boundary.ADSCrossRefMATHGoogle Scholar
  12. 12.
    R.J. DONATO. 1976. Journal of Thé Acoustical Society of America, vol 60, n°1, pp 34–39. Propagation of a spherical wave near a plane boundary with a complex impedance.ADSCrossRefGoogle Scholar
  13. 13.
    S.I. THOMASSON. 1977. Journal of the Acoustical Society of America, vol 61, no 3,,pp 659–674. Sound propagation above a layer with a large refraction index.ADSCrossRefGoogle Scholar
  14. 14.
    C.I. CHESSELL 1977. Journal of the Acoustical Society of America, vol 62, n° 4, pp 825–834. Propagation of noise along a finite impedance boundary.ADSCrossRefGoogle Scholar
  15. 15.
    K. ATTENBOROUGH, S.I. HAYEK, J.M. LAWTHER. 1980. Journal of the Acoustical Society of America, vol 68, n° 5, pp 1493–1501. Propagation,of source above a porous half-space.ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    L.M. BREKHOVSKIKH. 1960. Waves in layered media, New-York, Academic Press Inc.Google Scholar
  17. 17.
    H. SAADAT and P. FILIPPI. 1981. Journal of the Acoustical Society of America, vol 69, n° 2, pp 397–403. Diffraction of a spherical wave by a thin infinite plate.ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    D. HABAULT. 1981. Note L.M.A. n° 1848, Marseille. Propagation acoustique en présence d’une membrane semi-infinie et d’un demi-plan réfléchissant: cas bidimensionnel.Google Scholar
  19. 19.
    P. FILIPPI. 1982. See lecture: Integral equations in Acoustics.Google Scholar
  20. 20.
    M. BRIQUET and P. FILIPPI. 1977. Journal of the Acoustical Society of America, vol 61, pp 640–646. Diffraction of a spherical wave by an absorbing plane.ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    D. HABAULT, and P.J.T. FILIPPI. 1978. Journal of Sound and Vibration, vol 56, pp 87–95. On the resolvant of the Pekeris operator with a Neumann condition.ADSCrossRefMATHGoogle Scholar
  22. 22.
    C. H. WILCOX. 1975. Lecture Notes in Mathematics, Springer Verlag, Berlin-Heidelberg - New York. Scattering theory for the d’Alembert equation.Google Scholar
  23. 23.
    D. HABAULT and P.J.T. FILIPPI. 1981. Journal of Sound and Vibration vol 79, n° 4, pp 529–550. Ground effect analysis: surface wave and layer potential representations.ADSCrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    H. WEYL. 1919. Annales der Physik. Leipzig, vol 60, pp 481–500. Ausbreitung elektromagnetisher Weller Ober einen ebenen Leiter.ADSCrossRefMATHGoogle Scholar
  25. 25.
    P.J.T. FILIPPI. 1981. Note L.M.A- n° 1347, Marswille. Rayonnement de sources réparties et intégrales de Laplace: applications aux milieux stratifiés.Google Scholar
  26. 26.
    G.N. WATSON. 1962.A’treatise on the theory of Bessel functions, 2nd edition. Cambridge at the University Press.Google Scholar
  27. 27.
    Y.L. LUKE. 1975. Mathematical functions and their applications, New-York: Academic Press Inc.Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Dominique Habault
    • 1
  1. 1.Laboratoire de Mécanique et d’AcoustiqueMarseille cedex 9France

Personalised recommendations