Advertisement

Integral Equations in Acoustics

  • Paul J. T. Filippi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 277)

Abstract

The aim of this course is twofold. First, the integral equations of linear acoustics are established for both interior and exterior problems. The integral representation of the diffracted field has several advantages: a/ the regularity theorems of the solution are easily obtained using the theories of “pseudo-differential operators” [1, 2] and “Poisson pseudo-kernels”[3, 4], b/ it is probably the most convenient formulation when no-local boundary conditions are involved; c/ numerical methods provide analytical approximations of the total field which are very useful for exterior problems (far-field diffraction patterns are easily obtained, constant level curves can be drawn,...). Another significant result (which is not established here) concerns the so-called “edge-conditions” which appear when the propagation domain has a non-regular boundary, or more, when the diffracting obstacle is an infinitely thin screen. Such boundaries or obstacles can be considered as the limit of a sequence of regular boundaries or no-zero thickness regular obstacles. It can be shown that the corresponding sequence of solutions has an unique limit which belongs to a functional space, the properties of which depend on the boundary irregularities. The edge conditions are included in the definition of this functional space. The fundamental ideas of the modern symbolic calculus of the pseudo-differential operators theory were already described in the book “Multidimensional singular integral equations” by S.G. MIKHLIN [5]. But the method used by this author is rather complicated, and the proofs must be established for each particular case. The recent theories are of a great generality and the basic results, useful in acoustics, are very simple.

Keywords

Integral Equation Boundary Integral Equation Helmholtz Equation Sound Field Layer Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. HORMANDER 1968 American Mathematical Society Proceedings of Symposia in Pure and Applied Mathematics 10, 138–183. Pseudo-differential and hypoelliptic equations.CrossRefGoogle Scholar
  2. 2.
    R. SEELEY 1969 in C.I.M.E., Pseudo-differential operators, Stresa, 26 Agosto3 Settembre. Rome: Edizzioni Cremonese, Topics in pseudo-differential operators.Google Scholar
  3. 3.
    L. BOUTETDEMONVEL 1966 Journal d’Analyse Mathématique, Jérusalem 17, 241–304. Comportement d’un opérateur pseudodifférentiel sur une variété à bord.CrossRefMathSciNetGoogle Scholar
  4. 4.
    L. BOUTETDEMONVEL 1971 Acta Mathematica 126, 11–51. Boundary problems for pseudo-differential operators.CrossRefMathSciNetGoogle Scholar
  5. 5.
    S.G. MIKHLIN 1965 Multidimensional Singular Integral Equations. Oxford: Pergamon Press.MATHGoogle Scholar
  6. 6.
    L. SCHWARTZ 1966 Théorie des distributions. Paris: Hermann.MATHGoogle Scholar
  7. 7.
    L. LANDAU and E. LIFCHITZ 1971 Mécanique des fluides. Moscow: Editions Mir.Google Scholar
  8. 8.
    I. VEKUA 1968 New Method for Solving Elliptic Equations. Amsterdam: North Holland Publishing Company, New York: John Wiley and Sons Inc.Google Scholar
  9. 9.
    B.R. VAINBERG 1966 Russian Mathematical Surveys 21, 115–193. Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations.ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    C. H. WILCOX 1975 Lecture Notes in Mathematics: Scattering Theory for the d’Alembert Equation in Exterior Domains. Berlin-Heidelberg-New York: Springer Verlag.Google Scholar
  11. 11.
    P. FILIPPI 1979 Journal de Mécanique 18 (3) 565–591. Problème de transmission pour l’équation de Helmholtz scalaire et problèmes aux limites équivalents: application à la transmission gaz parfait - milieux poreux.ADSMATHMathSciNetGoogle Scholar
  12. 12.
    M.N. SAYHI, Y. OUSSET and G. VERCHERY 1981 Journal of Sound and Vibration 74 (2), 187–204. Solutions of radiation problems by collocation of integral formulations in terms of single and double layer potentials.ADSCrossRefMATHGoogle Scholar
  13. 13.
    J.C. NEDELEC 1975 Ecole Polytechnique, Centre de Mathématiques Appliqués. Curve finite element methods for the solution of singular integral equation of surfaces in R3Google Scholar
  14. 14.
    Y. HAYASHI 1973 Journal of Mathematical Analysis and Applications 44, 489–530. The Dirichlet problem for the two-dimensional Helmholtz equation for an open boundary.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    F. CASSOT and G. EXTREMET 1972 Acustica 27, 238–245. Détermination numérique du champ sonore et des fréquences propres dans une enceinte circulaire par la méthode de discrétisation.MATHGoogle Scholar
  16. 16.
    M. ABRAMOVITCH and L.A. STEGUN 1970 Handbook of Mathematical Tables. Washinton, D.C.: National Bureau of Standards.Google Scholar
  17. 17.
    G. EXTREMET 1970 Acustica 23, 307–314. Propagation du son dans une enceinte fermée.MathSciNetGoogle Scholar
  18. 18.
    CH. BOLOMEY and W. TABBARA 1971 Journées sur l’Application des potentiels de couches à la mécanique et à la diffraction, Centre de Recherches Physiques de Marseille (now L.M.A.), 2 november 1971, note n° 1218. Sur le couplage entre problèmes complémentaires pour l’équation des ondes.Google Scholar
  19. 19.
    CH. BOLOMEY and W. TABBARA 1973 Institution of Electrical Engineers Transactions AP21, 356–363. Numerical aspects of coupling between complementary boundary value problems.Google Scholar
  20. 20.
    H.A. SCHENCK 1968 Journal of the Acoustical Society of America, 44, 41–58. Improved integral formulation for acoustic radiation problems.ADSCrossRefGoogle Scholar
  21. 21.
    P. FILIPPI and G. DUMERY 1969 Acustica 21, 343–350. Etude théorique et numérique de la diffraction par un écran mince.Google Scholar
  22. 22.
    F. CASSOT 1971 Thèse de spécialité en Acoustique, Marseille 29 octobre 1971. Contribution à l’étude de la diffraction par un écran mince. (See also Proceedings of the 7th International Congress on Acoustics, Budapest, 1971).Google Scholar
  23. 23.
    F. CASSOT 1975 Acustica 34, 64–71. Contribution à l’étude de la diffraction par un écran mince.MATHGoogle Scholar
  24. 24.
    Z. MAEKAWA 1965 Mémoires of the Faculty of Engineering, Kobe University 11 (29). Noise reduction by screens.Google Scholar
  25. 25.
    A. DAUMAS 1978, Acustica 40 (4) 213–222. Etude de la diffraction par un écran mince disposé sur le sol.Google Scholar
  26. 26.
    M. SELVA 1977, Thèse de spécial-äté en Analyse Numérique, Université de Provence, Marseille. Sur une équation à noyau singulier issue de la théorie de la diffraction.Google Scholar

Complementary Bibliography

  1. 1.
    H. LEVINE and J. SCHWINGER 1948, Physical Review 74, 958–974. On the theory of diffraction by an aperture in an infinite plane screen, I.ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    H. LEVINE and J. SCHWINGER 1949, Physical Review 75, 1423–1432. On the theory of diffraction by an aperture in an infinite plane screen, II.ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    C. J. BOUWKAMP 1954 Reports on Progress in Physics 17, 35–100. Diffraction theory.ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    C. MIRANDA 1955 Equazioni alle derivate parziali di tipo ellitico. Berlin: Springer.Google Scholar
  5. 5.
    L.I. MUSHKHELISHVILI 1958 Singular Integral Equations. Groningen: P. Noordhoff N.V.Google Scholar
  6. 6.
    P. WERNER 1962 Archives of Rational Mechanics and Analysis 10, 29–66. Randwertprobleme der mathematischen Akustik.ADSCrossRefMATHGoogle Scholar
  7. 7.
    V.D. KUPRADZE 1965 Potential Methods in Theory of Elasticity. Jerusalem: Israel Program for Scientific Translations.MATHGoogle Scholar
  8. 8.
    D. GREENSPAN 1966 Archives of Rational Mechanics and Analysis, 23, 288–316. A numerical methof for the exterior Dirichlet problem for the reduced wave equation.ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    T.S. LUU, G. COULMY and J. CORNIGLION 1969 Association Technique Maritime et Aéronautrque (Paris). Technique des effets élémentaires dans la résolution des problèmes d’hydro-et d’aérodynamique.Google Scholar
  10. 10.
    G.F. ROACH 1970 Archives of Rational Mechanics and Analysis 36, 79–88. Approximate Green’s function and the solution of related integral equations.ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    T.S. LUU, 1970 Association Technique Maritime et Aéronautique (Paris). Calcul de l’hélice marine subcavitante par la méthode de singularité.Google Scholar
  12. 12.
    T.S. LUU, G. COULMY and J. CORNIGLION 1971 Association Technique, Maritime et Aéronautique. Etude des écoulements instationnaires des aubes passantes par une théorie non linéaire.Google Scholar
  13. 13.
    T.S. LUU, G. COULMY and J. CORNIGLION 1971 Association Technique, Maritime et Aéronautique. Calcul non linéaire de l’écoulement à potentiel autour d’une aile d’envergure finie de forme arbitraire.Google Scholar
  14. 14.
    A.J. BURTON and G.F. MILLER 1971 Proceedings of the Royal Society, London, A323, 201–210. The application of integral equation methods to the numerical solution of some exterior boundary problems.ADSMathSciNetGoogle Scholar
  15. 15.
    J. VIVOLI 1972 Thèse, Marseille No.A.O. 7868. Vibrations des plaques et potentiels de couches.Google Scholar
  16. 16.
    D.S. JONES 1972 Journal of Sound and Vibration 20, 71–78. Diffraction theory: a brief introductory review.ADSCrossRefMATHGoogle Scholar
  17. 17.
    J. VIVOLI and P. FILIPPI 1974 Journal of the Acoustical Society of America 53, 562–567. Eigenfrequencies of thin plates and layer potentials.Google Scholar
  18. 18.
    D.S. JONES 1974 Quaterly Journal of Mechanics and Applied Mechanics XXVII, 129–142. Integral equations for the exterior acoustic problem.Google Scholar
  19. 19.
    R.E. KLEINMAN and G.F. ROACH 1974 SIAM Review 16, 214–236. Boundary integral equations for the three-dimensional Helmholtz equation.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    J.C. NEDELEC 1976 Computational Methods in Applied Mechanics and Engineering 8, 61–80. Curved finite element methods for the solution of singular integral equations in R3.ADSCrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    J. GIROIRE 1976 Ecole Polytechnique, Centre de Mathématiques Appliquées. Formulation variationnelle par équations intégrales droblèmes aux limites extérieurs.Google Scholar
  22. 22.
    L.M. DELVES and J. WALSH 1974 Numerical Solution of Integral Equations. Oxford: University Press.MATHGoogle Scholar
  23. 23.
    R.E. KLEINMAN and W.L. WENDLAND 1977 Journal of Mathematical Analysis and Applications 57, (1), 170–20,. On Neumann’s method for the exterior Neumann problem for the Helmhcltz equation.ADSCrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    G.C. HSIAO and W.L. WENDLAND 1977, Journal of Mathematical Analysis and Applications 58 (3), 449–481. A finite element method for some integral equations of the first kind.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    G.C. HSIAO, P. KOPP and W.L. WENDLAND 1980, Computing 25, 89–130. A Galerkin collocation method for some integral equations of the first kind.CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    G.C. HSIAO and W.L. WENDALAND 1981, Jurnal of Integral Equations 3, 135–299. The Aubin-Nitsche lemma for integral equations.Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Paul J. T. Filippi
    • 1
  1. 1.Laboratoire de Mécanique et d’AcoustiqueMarseille cedex 9France

Personalised recommendations