Advertisement

Stochastic Electrodynamics General Considerations

  • Simon Diner
Part of the International Centre for Mechanical Sciences book series (CISM, volume 261)

Abstract

Stochastic Electrodynamics is a tentative to account for the peculiarities of quantum physics from a completely classical point of view. It has the advantage over many other attempts on that way to be physically well defined and to lead to equations which are not impossible to solve, so that it is possible to check the theory against experiment or other theories, as quantum mechanics.

Keywords

Quantum Theory Detailed Balance Classical Statistical Mechanic Stochastic Electrodynamic Photon Counting Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LEVY-LEBLOND, J. M., Int. J. Quant. Chem., Suppl. 1, 415, 1977.Google Scholar
  2. 2.
    FROHLICH, H., Riv. Nuovo Cimento, 3, 490, 1973Google Scholar
  3. 3.
    PRIMAS, H., J. Math. Biol., 4, 281, 1977.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    PRIMAS, H and GANS, W., in “Materie-Geist-Leben:zum Probleme der Reèuktion der Wissenschaften”, ed. by Kanitschneider, B., Dunker und Humblot, Berlin, P 15, 1979Google Scholar
  5. 5.
    MAC CORMACH, R., Isis, 61, 459, 1970.CrossRefGoogle Scholar
  6. 6.
    KITTEL, C., Thermal Physics, Wi, ley, 1969.Google Scholar
  7. 7.
    WEHRL, A., Rev. Mod. Phys., 50, 221, 1978.ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    GEORGE, C., PRIGOGINE, I. and ROSENFELD, L., Detkgl. Danske Videnska. bernes Selskab, mat-fys Meddelelser, 38, 12, 1972.MathSciNetGoogle Scholar
  9. 9.
    ROGOVIN, D. ind SCULLY, M., Physics Reports, 25 C (n°3), 175, 1976.Google Scholar
  10. 10.
    ENZ, C. P., Physica, 89A, 1, 1977.CrossRefMathSciNetGoogle Scholar
  11. 11.
    GUDDER, S. P., in “The uncertainty principle and foundations of quantum mechanics”, ed. by Price, W. C. and Chissik, S. S., Wiley, p, 1977.Google Scholar
  12. 12.
    BOHM, D., Quantum Theory, Prentice Ha11, 1951.Google Scholar
  13. 13.
    COHEN, L., Philosophy of Science, 33, 317, 1966.CrossRefGoogle Scholar
  14. 14.
    KIRKWOOD, J. G., Phys. Rev., 44, 31, 1933.ADSCrossRefGoogle Scholar
  15. 15.
    DE GROOT, S. R., La transformation de Weyl et la fonction de Wigner:une forme alternative de la mécanique quantique, Montréal, 1974.Google Scholar
  16. 16.
    ZUBAREV, D. N., Non equilibrium statistical thermodynamics, Plenum Publishing Corporation, 1974.Google Scholar
  17. 17.
    HANGGI, P., Helv. Phys. Acta, 51, 202, 1978.MathSciNetGoogle Scholar
  18. 18.
    CALLEN, H. B. and WELTON, T. A., Phys. Rev., 83, 34, 1951.ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    HELSTROM, C. W., Quantum detection and estimation theory, Academic Press, 1976.Google Scholar
  20. 20.
    DAVIES, E. B., Quantum theory of open systems, Academic Press, 1976.Google Scholar
  21. 21.
    MARSHALL, T. W., Proc. Cambridge Philos. Soc., 61, 537, 1965.MATHGoogle Scholar
  22. 22.
    BOYER, T. H., Phys. Rev., 182, 1374, 1969.ADSCrossRefGoogle Scholar
  23. 23.
    BOYER, T. H., Phys. Rev., 186, 1304, 1969.ADSCrossRefGoogle Scholar
  24. 24.
    MILONNI, P. W., Phys. Reports, 25, 1, 1976.ADSCrossRefGoogle Scholar
  25. 25.
    MARSHALL, T. W., Proc. Roy. Soc., A276, 475, 1963.ADSCrossRefMATHGoogle Scholar
  26. 26.
    THEIMER, O., Phys. Rev. Dv4, 1597, 1971.Google Scholar
  27. 27.
    BOYER, T. H., Phys. Rev., A18, 1228, 1978.ADSCrossRefGoogle Scholar
  28. 28.
    BOYBR, T. H., Phys. Rev., DA, 2382, 1976.Google Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • Simon Diner
    • 1
  1. 1.Institut de Biologie Physico-chimiqueLaboratoire de Chimie QuantiqueParisFrance

Personalised recommendations