Nonseparability in Quantum Mechanics

  • GianCarlo Ghirardi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 261)


As well known, there are two main features of quantum mechanics which are quite generally considered as unsatisfactory, i.e. quantum indeterminism and quantum nonseparability. By the first expression one indicates the fact that identically prepared physical systems (even when the preparation is the most precise that the conceptual structure of the theory allows, i. e. it corresponds to the measurement of a complete set of commuting observables) can give different results when subsequently subjected to identical measurements. By the second expression one indicates the loss of individuality of a physical system as a consequence of its interaction with another one, even when the two systems are well separated in space and no longer interacting.


Quantum Mechanic Pure State Factorize State Nonlocal Effect Hide Variable Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.S.Bell, Physics, 1, 195 (1964).Google Scholar
  2. 2.
    E.P.Wigner, Amer. Journ. Phys., 38, 1005 (1970).Google Scholar
  3. 3.
    E.Nelson, Phys. Rev., 150, 1079 (1966).CrossRefGoogle Scholar
  4. 4.
    G.C.Ghirardi,C.Omero,A.Rimini,T.Weber, Rivista del Nuovo Cimento, vol.1,N°3 (1978).Google Scholar
  5. 5.
    A.Einstein,B.Podolsky,N.Rosen,Phys.Rev.,4, 777 (1935).Google Scholar
  6. 6.
    B. d’Espagnat, Conceptual Foundations of Quantum Mechanics, (Menlo Park, Cal.,1971).Google Scholar
  7. 7.
    W.H.Furry, Phys.Rev.,49, 393, 476 (1936).ADSCrossRefGoogle Scholar
  8. 8.
    D.Bohm,Y.Aharonov, Phys.Rev., 108, 1070 (1957).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    J.M.Jauch, Rendiconti S.I.F.,Course IL (1971).Google Scholar
  10. 10.
    G.C.Ghirardi,A.Rimini,T.Weber,C.Omero, Nuovo Cimento, 39B, 130 (1977).CrossRefGoogle Scholar
  11. 11.
    D.Bohm, Phys.Rev., 85, 160 (1952).ADSCrossRefGoogle Scholar
  12. 12.
    H.Langhoff, Zeits.Phys., 160, 186 (1960).ADSCrossRefGoogle Scholar
  13. 13.
    C.A.Kocher, E.D.Commins, Phys.Rev.Letters, 18, 575 (1967).ADSCrossRefGoogle Scholar
  14. 14.
    S.J.Friedman, J.F.Clauser,Phys.Rev.Letters, 28, 938 (1972).ADSCrossRefGoogle Scholar
  15. 15.
    L.Kasday,Rendiconti S.I.F., Course IL (1971).Google Scholar
  16. 16.
    G.Faraci,D.Gutkowsky,S.Notarrigo,A.R.Pennisi, Lett.Nuovo Cimento, 9, 607 (1974).CrossRefGoogle Scholar
  17. 17.
    L.R.Kasday,J.D.Ullmann,C.S.Wu,Nuovo Cimento, 25B, 633(1975).Google Scholar
  18. 18.
    G.C.Ghirardi,A.Rimini,T.Weber,Nuovo Cimento, 31B, 177(1976).Google Scholar
  19. K.Kraus,Ann.of Phys. N.Y., 64, 311 (1971).Google Scholar
  20. 20.
    G.Lindblad,Comm.Math.Phys., 48, 119 (1976).Google Scholar
  21. 21.
    G.C.Ghirardi,A.Rimini,T.Weber,Nuovo Cimento, 36B, 97 (1976).Google Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • GianCarlo Ghirardi
    • 1
  1. 1.International Centre for Theoretical PhysicsIstituto di Fisica Teorica dell’Università andTriesteItalia

Personalised recommendations