Solitons of a Nonlinear Schrödinger Equation

  • T. A. Minelli
  • A. Pascolini
Part of the International Centre for Mechanical Sciences book series (CISM, volume 261)


In recent years, there has been a considerable development in the study of the soliton solutions of the class of nonlinear Schrödinger equations
for several forms of the nonlinear term F(ρ).1


Soliton Solution Nonlinearity Parameter Wave Mechanic Potential Jump Nonlinear Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lonngren K. and Scott A.C. Eds., Solitons in Action,Academic,N.Y.,1978.Google Scholar
  2. Scott A.C., Chu F.Y.F. and McLaughlin D.W., The Soliton etc., Proc..IEEE, 61, 1443, 1973.ADSCrossRefMathSciNetGoogle Scholar
  3. 2.
    Bialynicki-Birula I. and Mycielski J., Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. ClIII, 23, 461, 1975.MathSciNetGoogle Scholar
  4. Bialynicki-Birula I. and Mycielski J., Nonlinear wave mechanics, Ann. Phys. 100, 62, 1976.ADSCrossRefMathSciNetGoogle Scholar
  5. Bialynicki-Birula I. and Mycielski J., Gaussons, Physica Scripta (topical issue Solitons), 1979.Google Scholar
  6. Ventura I. and Marquez G.C., Semiclassical quantization of a field theoretical model, J.Math. Phys. 19, 838, 1978.ADSCrossRefGoogle Scholar
  7. 3. Oficialski J. and Bialynicki-Birula I., Collisions of gaussons, Acta Physica Polonica,B9, 759, 1978.Google Scholar
  8. 4.
    Newell A.C., Nonlinear Tunnelling, J.Math. Phys. 19, 1126, 1978.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 5.
    Segur H. and Ablowitz J., Asymptotic solutions and conservation laws for the nonlinear Schröd. eq., J.Math. Phys. 17, 710 and 714, 1976.Google Scholar
  10. Pereira N.R. and Stenflo L., Nonlinear Schrödinger equations etc., Phys. of Fluids 20, 1733, 1977.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. Watanabe G., Solitons and Generation of tail etc. J.Phys. Soc. Jap. 45, 276, 1978.ADSCrossRefGoogle Scholar
  12. Makhankov V.G., Dynamics of classical solitons, Phys. Rep. 35, 1, 1978.ADSCrossRefMathSciNetGoogle Scholar
  13. 6.
    Zakharov J.V.E. and Shabat A.B., Exact theory of two dimensional self focusing etc. Soviet Phys. JETP 34, 62, 1972.ADSMathSciNetGoogle Scholar
  14. 7.
    Goldberg A. et al., Computer-generated motion pictures of Q.M.transmis-sion and reflection phenomena, Am. J.Phys. 35, 177, 1967.ADSCrossRefGoogle Scholar
  15. 8.
    Shimony A., Proposed neutron interferometer test for some nonlinear variants of wave mechanics, Phys. Rev. 20A, 394, 1979.ADSCrossRefGoogle Scholar
  16. 9.
    De Broglie L., Nonlinear wave mechanics, Elsevir, New York, 1960.Google Scholar
  17. 10.
    Andreade e Silva J., La theorie de la double solution; Fer F., Guidage de Particules, ondes singulières, Louis de Broglie, sa conception du monde physique, Gauthier-Villars, Paris 1973.Google Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • T. A. Minelli
    • 1
  • A. Pascolini
    • 1
  1. 1.Istituto di Fisica dell’UniversitàPadovaItalia

Personalised recommendations