Advertisement

Stability and Constitutive Inequalities in Plasticity

  • H. Petryk
Part of the International Centre for Mechanical Sciences book series (CISM, volume 336)

Abstract

A thermodynamic theory of stability in solids with intrinsic dissipation of plastic type is developed, and various related constitutive inequalities are discussed. The thermodynamic formalism for finite strain elasto-plasticity is presented, with rate-dependent plastic behaviour and its rate-independent limit described with the help of internal variables. A general condition sufficient for stability of equilibrium in the sense of Lyapunov is formulated and then successively transformed as additional assumptions are introduced, with special attention focused on isothermal rate-independent plasticity. In the latter case the conditions for stability of a quasi-static process at varying loading are also derived and shown to differ from the respective conditions of stability of equilibrium. The stability conditions are formulated for an arbitrary continuous system with specified boundary conditions as well as for a homogeneous material element embedded in a continuum. Relation between intrinsic instability at the level of a material element and propagation of acceleration waves or strain localization in shear bands is discussed.

Keywords

Reference Configuration Material Element Initial Disturbance Heat Reservoir Transitory Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hill, R.: Aspects of invariance in solids mechanics, Advances in Applied Mechanics, vol. 18, Acad. Press, New York 1978, 1–75.CrossRefMATHGoogle Scholar
  2. 2.
    Mandel, J.: Plasticité Classique et Viscoplasticité, CISM Course, Udine, Springer 1971.Google Scholar
  3. 3.
    Rice, J.R.: Inelastic constitutive relations for solids: an internai- variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19 (1971) 433–455.CrossRefMATHGoogle Scholar
  4. 4.
    de Groot, S.R. and Mazur, P.: Non-equilibrium Thermodynamics, North-Holland, Amsterdam 1962.Google Scholar
  5. 5.
    Muschik, W.: Internal variables in non-equilibrium thermodynamics, J. Non-Equilib. Thermodyn., 15 (1990) 127–137.Google Scholar
  6. 6.
    Kestin, J.: A note on the relation between the hypothesis of local equilibrium and the Clausius-Duhem inequality, J. Non-Equilib. Thermodyn., 15 (1990) 193–212.MATHGoogle Scholar
  7. 7.
    Rice, J.R.: Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms, in: Constitutive Equations in Plasticity (Ed. A. S. Argon), MIT Press, Cambridge Mass. 1975, 23–79.Google Scholar
  8. 8.
    Lehmann, T. (Ed.): The Constitutive Law in Thermoplast ici ty, CISM Course, Udine, Springer 1984.Google Scholar
  9. 9.
    Kleiber, M. and Raniecki, B.: Elastic-plastic materials at finite strains, in: Plasticity Today: Modelling, Methods and Applications (Ed. A. Sawczuk and G. Bianchi), Elsevier, London 1985, 3–46.Google Scholar
  10. 10.
    Neuhäuser, H.: Physical manifestation of instabilities in plastic flow, in: Mechanical Properties of Solids: Plastic instabilities (Ed. V. Balakrishnan and E.C. Bottani), World Scientific, Singapore 1986, 209–252.Google Scholar
  11. 11.
    Hill, R. and Rice, J.R.: Elastic potentials and the structure of inelastic constitutive laws, SIAMJ. Appl. Math., 25 (1973) 448–461.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Kestin, J. and Rice, J.R.: Paradoxes in the application of thermodynamics to strained solids, in: A Critical Review of Thermodynamics (Ed. E.B. Stuart et. al.), Mono Book Corp., Baltimore 1970, 275–298.Google Scholar
  13. 13.
    Morreau, J. J.: Sur les lois de frottement, de plasticité et de viscosité, C. R. Acad. Sci. Paris, t. 271, Serie A (1970) 608–611.Google Scholar
  14. 14.
    Morreau, J.J.: On Unilateral Constraints, Friction and Plasticity, CIME Course, Bressansone, in: New Variational Techniques in Mathematical Physics, Edizioni Cremonese, 1974, 175–322.Google Scholar
  15. 15.
    Nguyen, Q.S.: Stabilité et bifurcation des systèmes dissipatifs standards à comportement indépendant du temps physique, C. R. Acad. Sci. Paris, t. 310, Serie II (1990) 1375–1380.MATHGoogle Scholar
  16. 16.
    Nguyen, Q.S.: Bifurcation and stability of time-independent standard dissipative systems, CISM Course, Udine 1991.Google Scholar
  17. 17.
    M.J. Sewell: A survey of plastic buckling, in: Stability (H.H.E. Leipholz, ed.), Univ. of Waterloo Press, Ontario 1972, 85–197.Google Scholar
  18. 18.
    Hill, R. and Rice, J.R.: Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solids, 20 (1972) 401–413.CrossRefMATHGoogle Scholar
  19. 19.
    Hill, R.: Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Solids, 7 (1959) 209–225.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Movchan, A.A.: Stability of processes with respect to two metrics (in Russian), Prikl. Math. Mekh., 24 (1960) 988–1001.Google Scholar
  21. 21.
    Bazant, Z.P.: Stable states and stable paths of propagation of damage zones and interactive fractures, in: Cracking and Damage (Ed. J. Mazars and Z.P. Bazant), Elsevier, London 1989, 183–206.Google Scholar
  22. 22.
    Ericksen, J.L.: A thermo-kinetic view of elastic stability theory, Int. J. Solids Structures, 2 (1966) 573–580.CrossRefGoogle Scholar
  23. 23.
    Gurtin, M.E.: Thermodynamics and Stability, Arch. Rational Mech. Anal., 59 (1975) 63–96.CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Petryk, H.: A consistent energy approach to defining stability of plastic deformation processes, in: Stability in the Mechanics of Continua, Proc. IUTAM Symp. (Ed. F.H. Schroeder), Springer, Berlin 1982, 262–272.CrossRefGoogle Scholar
  25. 25.
    Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids, J. Mech. Phys. Solids, 6 (1958) 236–249.CrossRefMATHGoogle Scholar
  26. 26.
    Petryk, H.: On the second-order work in plasticity, Arch. Mech., 43 (1991) 377–397.MATHMathSciNetGoogle Scholar
  27. 27.
    Nguyen, Q.S. and Radenkovic, D.: Stability of equilibrium in elastic plastic solids, Springer Lecture Notes in Mathematics, Vol. 503 (1976) 403–414.CrossRefGoogle Scholar
  28. 28.
    Petryk, H.: (to be published). Google Scholar
  29. 29.
    Knops, R.J. and Wilkes, E.W.: Theory of Elastic Stability, Handbuch der Physik VI a/3, Springer, Berlin 1973.Google Scholar
  30. 30.
    Koiter, W.T.: A basic open problem in the theory of elastic stability, Springer Lecture Notes in Mathematics, Vol. 503 (1976) 366–373.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Petryk, H.: The energy criteria of instability in time-independent inelastic solids, Arch. Mech. 43 (1991) 519–545.MATHMathSciNetGoogle Scholar
  32. 32.
    Petryk, H.: On constitutive inequalities and bifurcation in elastic-plastic solids with a yield-surface vertex, J. Mech. Phys. Solids, 37 (1989) 265–291.CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Nguyen, Q.S. and Petryk, H.: A constitutive inequality for time-independent dissipative solids, C. R. Acad. Sci. Paris, t. 312, Serie II, (1991) 7–12.MATHMathSciNetGoogle Scholar
  34. 34.
    Morrey, C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math., 2 (1952) 25–53.CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1977) 337–403.CrossRefMATHGoogle Scholar
  36. 36.
    Graves, L.M.: The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939) 656–660.CrossRefMathSciNetGoogle Scholar
  37. 37.
    van Hove, L.: Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues, Proc. Kon. Ned. Acad. Wet., 50 (1947) 18–23.MATHGoogle Scholar
  38. 38.
    Petryk, H.: Material instability and strain-rate discontinuities in incrementally nonlinear solids, J. Mech. Phys. Solids, 40 (1992) 1227–1250.CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Abeyratne, R. and Knowles, J.K.: On the driving traction acting on a surface of strain discontinuity in a continuum, J. Mech. Phys. Solids, 38 (1990) 345–360.CrossRefMathSciNetGoogle Scholar
  40. 40.
    Petryk, H.: The energy criteria of instability of plastic flow, XVII IUTAM Congress, Grenoble (1988).Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • H. Petryk
    • 1
  1. 1.Polish Academy of SciencesWarsawPoland

Personalised recommendations