Non-Equilibrium Thermodynamics of Electromagnetic Solids

  • G. A. Maugin
Part of the International Centre for Mechanical Sciences book series (CISM, volume 336)


The thermomechanics of electromagnetic continua is a branch of energetics which deals with a unification of continuum mechanics and electrodynamics of material media under the umbrella of general thermodynamics. This obviously goes in the direction indicated by the great P.Duhem early in this century (Duhem, 1911, 1914/1954). This ambitious, somewhat Aristotelian-like, scheme also adds one difficulty to the other. In effect, in addition to the cumbersome and rather heavy framework of nonlinear continuum mechanics (such as exposed in modern treatises, e.g., Truesdell and Toupin, I960, Truesdell and Noll, 1965; Eringen 1980, Eringen 1971–1976), one has to consider electromagnet ism (e.g., Jackson, 1962) and then combine them (in an nonlinear manner; this is not a linear superposition) in the harmonious frame of thermodynamics. Some of the difficulties met have to do with the electrodynamics of moving bodies (writing of fields and equations in appropriate frames), while others relate to the introduction of a general deformation field (“material” writing of fields). Finally, there are difficulties connected with the inherent complexity of some of the behaviors (e.g., hysteresis), and even more so, the non-unique thermodynamical framework at the time of writing!


Internal Variable Electric Polarization Deborah Number Dissipation Inequality Electric Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BAMPI. and MORRO A., (1981), Dissipative Effects and waves in Magnetofluidynamics, J. Non-Ecruilib.Thermodynam., 6, 1–14.CrossRefMATHMathSciNetGoogle Scholar
  2. BASSIOUNY E., GHALEB A.F. and MAUGIN G.A., (1988a), Thermodynamical Formulation for Coupled Electromechanical Hysteresis-I-Basic Equations, Int.J.Engng.Sci., 26, 1279–1295.CrossRefMATHMathSciNetGoogle Scholar
  3. BASSIOUNY E., GHALEB A.F. and MAUGIN G.A., (1988b), Thermodynamical Formulation for Coupled Electromechanical Hysteresis — II — Poling of Ceramics, Int. J. Engng. Sci., 26, 1297–1306.CrossRefMATHMathSciNetGoogle Scholar
  4. BASSIOUNY E. and MAUGIN G.A., (1989a), Thermodynamical Formulation for Coupled Electromechanical Hysteresis — III — Parameter Identification, Int.J.Engng.Sci., 27, 975–987.CrossRefMATHMathSciNetGoogle Scholar
  5. BASSIOUNY E. and MAUGIN G.A., (1989b), Thermodynamical Formulation for Coupled Electromechanical Hysteresis IV Combined Electromechanical Loadings, Int.J.Engng.Sci., 27, 989–1000.CrossRefMATHMathSciNetGoogle Scholar
  6. BATAILLE J. and KESTIN J., (1975), L’interprétation physique de la thermodynamique rationnelle, J.Mécanique, 14, 365–384.MATHMathSciNetGoogle Scholar
  7. BRIDGMAN P.W., (1941), The Nature of Thermodynamics, Harvard University Press, Cambridge, Mass. (New Edition, Harper and Brothers, New York, 1961).Google Scholar
  8. CHEN P.J., (1980), Three-dimensional Dynamic Electromechanical Constitutive Relations for Ferroelectric Materials, Int.J.Solids Struct., 16, 1059–1067.CrossRefMATHGoogle Scholar
  9. CHEN P.J., (1984), Hysteresis Effects in Deformable Ceramics, in: The Mechanical Behavior of Electromagnetic Solid Materials, ed. G.A. Maugin, pp.137–143, North-Holland, Amsterdam.Google Scholar
  10. CHEN P.J. and PEERCY P.S., (1979), One-dimensional Dynamic Electromechanical Constitutive Equations of ferroelectric Materials, Acta Mechanica, 31, 231–241.CrossRefMATHMathSciNetGoogle Scholar
  11. CHERNYI L.T., (1983), Models of Ferromagnetic Continua with Magnetic Hysteresis, in: Macroscopic Theories of Matter and Fields, ed. L.I. Sedov, pp.116–140, Mir Publishers, Moscow.Google Scholar
  12. CHUA L.O. and STROMSMOE K.A., (1971), Mathematical Models for Dynamic Hysteresis Loops, Int. J.Engng. Sci., 9, 564–574.Google Scholar
  13. COLLET B., (1983), Shock Waves in Deformable Piezoelectric Materials, in: Proc. llth Intern. Congress of Acoustics, Special Issue of Revue d’Acoustique, Vol.2, Sec.2.1, pp.125–128.Google Scholar
  14. COLLET B., (1984), Shock Waves in Deformable Ferroelectric Materials, in: The Mechanical Behavior of Electromagnetic Solid Materials, ed. G.A. Maugin, pp.157–163, North-Holland, Amsterdam.Google Scholar
  15. COLLET B., (1985), Nonlinear Wave propagation in Elastic Dielectrics with Internal Variables, J.Techn. Physics, 26, 285–289.Google Scholar
  16. COLLET B., (1987), Transient Nonlinear Waves in Elastic Dielectric Materials, in: Electromagnetomechanical Interactions in Deformable Solids and Structures, eds. Y. Yamamoto and K. Miya, pp.329–334, North-Holland, Amsterdam.Google Scholar
  17. DAHER N. and MAUGIN G.A., (1987), Deformable Semiconductors with Interfaces: Basic Equations, Int.J.Engng.Sci., 25, 1093–1129.CrossRefMATHMathSciNetGoogle Scholar
  18. DE GENNES P.G.(1966/1989), Superconductivity of Metals and Alloys, W.A.Benjamin, New York (New Edition, 1989).Google Scholar
  19. DE GROOT S.R. and SUTTORP L.G., (1972), Foundations of Electrodynamics, North-Holland, Amsterdam.Google Scholar
  20. DROUOT R. and MAUGIN G.A., (1985), Continuum Modelling of Polyelectrolytes in Solution, Rheologica Acta, 24, 474–487.CrossRefMATHGoogle Scholar
  21. DUHEM P. (1911), Traité d’Energétique ou de Thermodynamique Générale, Two volumes, Gauthier-Villars, Paris.MATHGoogle Scholar
  22. DUHEM P., (1914/1954), The Aim and Structure of Physical Theory, Princeton University Press, Princeton, N.J. (1954; Translation from the Second French Edition, Rivière, Paris, 1914).MATHGoogle Scholar
  23. ERINGEN A.C. (1971–1976;Editor), Continuum Physics, Four volumes, Academic Press, new York.Google Scholar
  24. ERINGEN A.C., (1980), Mechanics of Continua, Revised and enlarged Edition, Krieger, new York.Google Scholar
  25. ERINGEN A.C. and MAUGIN G.A., (1990), Electrodynamics of Continua, Two volumes, Springer-Verlag, New York.Google Scholar
  26. FOMETHE A. and MAUGIN G.A., (1982), Influence of Dislocations on Magnon-Phonon Couplings. A Phenomenological Approach, Int.J.Engng.Sci., 20, 1125–1144.CrossRefMATHMathSciNetGoogle Scholar
  27. GERMAIN P., NGUYEN QUOC SON and SUQUET P., (1983), Continuum Thermodynamics, ASME Trans.J.Appl.Mech., 105, 1010–1020.CrossRefGoogle Scholar
  28. JACKSON J.D. (1962), Classical Electrodynamics, J.Wiley, New York.Google Scholar
  29. JOU D., CASAS-VASQUEZ J. and LEBON G., (1988), Extended Irreversible Thermodynamics Review, Rep.Prog, in Physics, 9, 1105–1179.CrossRefGoogle Scholar
  30. KARJALAINEN L.P. and MOILAMEN M., (1979), Detection of Plastic Deformation during Fatigue of Mild Steel by the Measurement of the Barkhausen Noise, NDT International, No.4, 51–55.Google Scholar
  31. KLUITENBERG G.A., (1973), On Dielectric and Magnetic Relaxation Phenomena and Non-equilibrium Thermodynamics, Physica, 68, 75–92.CrossRefGoogle Scholar
  32. KLUITENBERG G.A., (1977), On Dielectric and Magnetic Relaxation Phenomena and Vectorial Integranl Degrees of Freedom in Thermodynamics, Physica, 87A, 302–330.CrossRefGoogle Scholar
  33. KLUITENBERG G.A., (1981a), On Vectorial Internal Variables and Dielectric and Magnetic Relaxation Phenomena, Physica, 109A, 91–122. CrossRefMathSciNetGoogle Scholar
  34. KLUITENBERG G.A., (1981b), On Transformations of Internal Variables in the Thermodynamic Theory of a..., Physica, 109A, 123–127. CrossRefMathSciNetGoogle Scholar
  35. LOBANOV E.N., (1991), Theory of Superconducting Composites, Mekh. Komposit Materialov (in Russian), in the press.Google Scholar
  36. LYNTON E.A., (1969), Superconductivity, Methuen and Co. (3rd Edition)- New Printing: Science Paperback, Chapman and Hall, London (1971).Google Scholar
  37. MAUGIN G.A., (1979a), Internal Variables in Ferroelectric and Ferromagnetic Continua, in: Recent Developments in the Theory and Application of Generalized and Oriented Media, pp.201–204, American Academy of Mechanics, Calgary, Canada.Google Scholar
  38. MAUGIN G.A., (1979b), Vectorial Internal Variables in Magnetoelasticity, J.Mécanique, 18, 541–563.MATHMathSciNetGoogle Scholar
  39. MAUGIN G.A., (1980), The Method of Virtual Power in Continuum Mechanics: Application to Coupled Fields, Acta Mechanica, 35, 1–70.CrossRefMATHMathSciNetGoogle Scholar
  40. MAUGIN G.A., (1981a), Electromagnetic Internal variables in Electromagnetic Continua, Arch. Mech., 33, 927–935.MATHMathSciNetGoogle Scholar
  41. MAUGIN G.A., (1981b), Simple Thermodynamical Model for Rigid Ferromagnets, Phys. Rev., B25, 7019–7025.CrossRefGoogle Scholar
  42. MAUGIN G.A., (1985), Nonlinear Electromechanical Effects and Applications (A Series of Lectures), World Scientific, Singapore.Google Scholar
  43. MAUGIN G.A., (1988), Continuum Mechanics of Electromagnetic Solids, North-Holland, Amsterdam (in Russian translation, MIR, Moskva, 1991).MATHGoogle Scholar
  44. MAUGIN G.A., (1989), Coupled Magnetomechanical and Electromechanical Hysteresis Effects, in: Applied Electromagnetics in Materials, eds. R.K.T. Hsieh and K. Miya, pp.5–18, Pergamon Press, London, Tokyo.Google Scholar
  45. MAUGIN G.A., (1990), Internal Variables and Dissipative Structures, J. Non-Equilibr. Thermodyn., 15, 173–192.Google Scholar
  46. MAUGIN G.A., (1991a), Thermodynamics of Hysteresis, in: Non-equilibrium Thermodynamics, Vol.7, “Extended Thermodynamics”, pp.25–52, eds. D. Salamon and S. Sieniutycz, Taylor and Francis, New York.Google Scholar
  47. MAUGIN G.A., (1991b), Compatibility of Magnetic Hysteresis with Thermodynamics, Int.J.Appl.Electrom.Mat., 2, 7–19.Google Scholar
  48. MAUGIN G.A., (1991c), The Thermomechanics of Plasticity and Fracture, Cambridge University Press (in Russian translation, MIR, Moskva, 1993).Google Scholar
  49. MAUGIN G.A., (1992a), Irreversible Thermodynamics of Elastic Superconductors, C.R.Acad.Sci.Paris, 11–314. Google Scholar
  50. MAUGIN G.A., (1992b), Material Inhomogeneities in Elasticity, Chapman and Hall, London.Google Scholar
  51. MAUGIN G.A., COLLET B., and POUGET J., (1986), Nonlinear Wave Propagation in Coupled Electromechamical Systems,, in: Nonlinear Wave propagation in Solids, ed. T.W. Wright, ASME Publ.Vol.AMD-77, pp.57–84, ASME, New York.Google Scholar
  52. MAUGIN G.A., COLLET B., DROUOT R. and POUGET J., (1992), Nonlinear Electromechanical Couplings, Manchester University Press, Manchester, U.K.Google Scholar
  53. MAUGIN G.A. and BASSIOUNY E., (1989), Continuum Thermodynamics of Electromechanical Hysteresis in Ceramics, in: Continuum Mechanics and its Applications, eds. G.A. C. Graham et al, pp. 225–235, Hemisphere Publ., New York.Google Scholar
  54. MAUGIN G.A. and DAHER N., (1986), Phenomenological Theory of Elastic Piezoelectric Semiconductors, Int.J. Engng. Sci., 21, 703–731.CrossRefMathSciNetGoogle Scholar
  55. MAUGIN G.A. and DROUOT R., (1983), Thermomagnetic Behavior of Magnetically Non-saturated Fluids, J. Magnetism and Magnetic Materials, 39, 7–10.CrossRefGoogle Scholar
  56. MAUGIN G.A. and ERINGEN A.C., (1977), On the Equations of the Electrodynamics of Deformable Solids of Finite Extent, J.Mécanique, 16, 101–147.MATHMathSciNetGoogle Scholar
  57. MAUGIN G.A. and FOMETHE A., (1982), On the Elastoviscoplasticity of Ferromagnetic Crystals, Int. J. Engng. Sci., 20, 885–908.CrossRefMATHMathSciNetGoogle Scholar
  58. MAUGIN G.A. AMD MILED A., (1986), Solitary Waves in Elastic Ferromagnets, Phys. Rev., B33, 4830–4832.CrossRefGoogle Scholar
  59. MAUGIN G.A. and MUSCHIK W., (1992), Thermodynamics with Internal variables: A Review, I-Generalities, II-Applications, J. Non-Equilibr. Thermodyn.Google Scholar
  60. MAUGIN G.A. and POUGET J., (1980), Electroacoustic Equations for One-domain Ferroelectric Bodies, J. Acoust. Soc.Amer., 68, 575–587.CrossRefMATHGoogle Scholar
  61. MAUGIN G.A. and SABIR M., (1990), Mechanical and Magnetic Hardening of Ferromagnetic Bodies: Influence OF residual Stresses and Application to Nondestructive Testing, Int. J.of Plasticity, 6, 573–589.CrossRefMATHGoogle Scholar
  62. MAUGIN G.A., SABIR M. and CHAMBON P., (1987), Coupled Magnetomechanical Hysteresis in Ferromagnets: Application to Nondestructive Testing, in: Electromagnetomechanical Interactions in Deformable Solids and Structures, eds.Y. Yamamoto and K. Miya, pp.255–264, North-Holland, Amsterdam.Google Scholar
  63. MCCARTHY M.F., (1984a), One-Dimensional Shock Waves in Deformable Dielectrics with Internal State Variables, Arch.Mech., 35, 97–107.Google Scholar
  64. MCCARTHY M.F., (1984b), One-Dimenisonal Pulse Propagation in Deformable Dielectrics with Internal State Variables, Arch.Rat.Mech.Anal., 86, 353–367.CrossRefMATHGoogle Scholar
  65. MEIXNER J., (1961), Der Drehimpulssatz in der Thermodynamik der irreversible Prozessen, Zeit.Phys., 16, 145–155.CrossRefMathSciNetGoogle Scholar
  66. MORRO A., DROUOT R. and MAUGIN G.A., (1985), Thermodynamics of Polyelectrolyte Solutions in an Electric Field, J.Non-Equilibr. Thermodyn., 10, 131–144.Google Scholar
  67. MORRO A., MAUGIN G.A. and DROUOT R., (1990), Diffusion in Polyelectrolyte Solutions, Rheologica Acta, 29, 215–222.CrossRefGoogle Scholar
  68. MULLER I., (1985), Thermodynamics, Pitman (now Longman), London.Google Scholar
  69. MUSCHIK W., (1990a), Internal Variables in Non-equilibrium Thermodynamics, J.Non-equilibr.Thermodyn., 15, 127–137.Google Scholar
  70. MUSCHIK W., (1990b), Aspects of Non-equilibrium Thermodynamics: Six Lectures on Fundamentals and Methods, World Scientific, Singapore.Google Scholar
  71. NEEL L., (1946), Bases d’une nouvelle théorie générale du champ coercitif, Ann. Univ. Grenoble, 22, 299–343.MathSciNetGoogle Scholar
  72. NELSON D.F., (1979), Electric, Optic and Acoustic Interactions in Dielectrics, J.Wiley-Interscience, New York.Google Scholar
  73. PARKUS H., (1979;Editor), Electromagnetic Interactions in Elastic Solids (CISM Lecture Notes, 1977), Springer-verlag, Wien.Google Scholar
  74. PARRY G.P., (1987), On Internal Variable Models of Phase Transitions, J. of Elasticity, 17, 63–70.CrossRefMATHMathSciNetGoogle Scholar
  75. POUGET J. and MAUGIN G.A., (1984), Solitons and Electroacoustic Interactions in ferroelectric Crystals-I, Phys. Rev., B30, 5306–5325.CrossRefGoogle Scholar
  76. PRAGER W., (1957), On Ideal Locking Materials, Trans.Soc.Rheology, 1, 169–175.CrossRefMATHGoogle Scholar
  77. PREISACH F., (1935), Uber die magnetische Nachwirkung, Zeit. Phys., 94, 277–302.CrossRefGoogle Scholar
  78. ROSENSWEIG R.E., (1989), Thermodynamics of Electromagnet ism, in: Thermodynamics: An Advanced Textbook for Chemical Engineers, by G. Astarita, Plenum, New York.Google Scholar
  79. RUDYAK V.M., (1971), The Barkhausen Effects, Sov.Phys. Uspekhi, 13, 451–479.Google Scholar
  80. SABIR M. and MAUGIN G.A., (1988), Microscopic Foundations of the barkhausen Effect, Arch. Mech., 40, 829–841.MATHMathSciNetGoogle Scholar
  81. TIERSTEN H.F., (1990), A Development of the Equations of Electromagnetism in Material Continua, Springer-verlag, New York.CrossRefMATHGoogle Scholar
  82. TINKHAM M., (1964), Phys. Rev. Lett., 13, 804.CrossRefGoogle Scholar
  83. TRUESDELL C.A. and NOLL W., (1965), Nonlinear Field Theories of Mechanics, in:Handbuch der Physik, Bd.II1/3, ed. S. Flügge, Springer-verlag, Berlin.Google Scholar
  84. TRUESDELL C.A. and TOUPIN R.A., (1960), The Classical Field Theories, in: Handbuch der Physik, Bd.III/1, ed. S. Flügge, Springer-verlag, Berlin.Google Scholar
  85. YAKUSHCOV V.V., ROZANOV D.K. and DREMIN A.N., (1968), On the Measurement of the Polarization relaxation Time in a Shock wave, Sov. Phys. JETP, 27, 213–215.Google Scholar
  86. ZHOU S.A. and MIYA K., (1991), A Nonequilibrium Theory of Thermoelastic Superconductors, Int. J. Appl. Electromag. Mat., 2, 21–38.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • G. A. Maugin
    • 1
    • 2
  1. 1.C.N.R.S.Université Pierre-et-Marie CurieParisFrance
  2. 2.Institute for Advanced Study BerlinBerlinGermany

Personalised recommendations