Extended Thermodynamics

  • G. Lebon
Part of the International Centre for Mechanical Sciences book series (CISM, volume 336)


The basic ideas underlying Extended Irreversible Thermodynamics are reviewed. This formalism is an extension of the Classical Theory of Irreversible Thermodynamics: it consists essentially of extending the space of the state variables by including the thermodynamical fluxes, like the heat flux, the inelastic stress tensor, mass flux,... among the set of variables. As illustrations, heat conduction in a rigid body and an elastic body will be explicitly treated. The microscopic foundations of Extended Thermodynamics are discussed in the framework of the kinetic theory of gases. It is also shown that Extended Thermodynamics is particularly well suited for obtaining the constitutive equations of rheology in general and, viscoelastic materials in particular. Comparison with Classical Irreversible Thermodynamics, Rational Thermodynamics and the Internal Variable Theory will also be outlined.


Constitutive Equation Entropy Production Helmholtz Free Energy Irreversible Thermodynamic Rational Thermodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Onsager, L.; Phys. Rev. 37, 405 (1931); ibid 38, 2265 (1931).CrossRefGoogle Scholar
  2. 2.
    Truesdell, C., Rational Thermodynamics. Mc Graw Hill, New York 1969, 2nd ed. Springer, Berlin 1988.Google Scholar
  3. 3.
    Prigogine, I., Etude Thermodynamique des Phénomènes Irréversibles. Desoer, Liège, 1947.Google Scholar
  4. 4.
    Prigogine, I., Introduction to Thermodynamics of Irreversible Processes. Interscience, New York, 1961.MATHGoogle Scholar
  5. 5.
    De Groot, S. and Mazur, P., Non-equilibrium Thermodynamics. North Holland, Amsterdam, 1962.Google Scholar
  6. 6.
    Coleman, B. and Owen, O., Arch. Rat. Mech. Anal. 54, 1 (1974).MATHMathSciNetGoogle Scholar
  7. 7.
    Eu, B., J. Chem. Phys. 73, 2958 (1980) and several papers published in J. Chem. Phys.from 1980 to 1992.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Garcia-Colin, L., Rev. Mex. Fisica 34, 344 (1988) 8a. Garcia-Colin, L. and Uribe, F., J. Non-Equil. Thermodyn., 16, 89 (1991).Google Scholar
  9. 9.
    Nettleton, R., Physics of Fluids 3, 216 (1960).CrossRefMathSciNetGoogle Scholar
  10. 10.
    Müller, I., Z. Phys. 198, 329 (1967).CrossRefMATHGoogle Scholar
  11. 11.
    Lebon, G., Bull. Acad. Roy. Sc. Belgique 64, 456 (1978).Google Scholar
  12. 12.
    Jou, D., Casas-Vazquez, J. and Lebon, G., eds, Lecture Notes in Phvsics. Vol 199, Springer, Berlin, 1984.Google Scholar
  13. 13.
    Lebon, G., Casas-Vazquez, J. and Jou, D., J. Phys. A13, 275 (1980).MathSciNetGoogle Scholar
  14. 14.
    Maxwell, J.C., Phil. Trans. Roy. Soc London 157, 49 (1867).CrossRefGoogle Scholar
  15. 15.
    Grad, H., Principles of the Kinetic theory of gases. Enc. of Physics, Vol. XII, Springer, Berlin, 1958.Google Scholar
  16. 16.
    Vernotte, P., C.R. Acad. Sci. Paris 246, 3154 (1958).MathSciNetGoogle Scholar
  17. 17.
    Cattaneo, G., Atti Sem. Mat. Fis. Univ. Modena 3, 83 (1948).MathSciNetGoogle Scholar
  18. 18.
    Lambermont, J. and Lebon, G., Phys. Lett. 42A, 499 (1973).CrossRefGoogle Scholar
  19. 19.
    Jou, D., Casas-Vazquez, J. and Lebon, G., Rep. Prog, in Phys. 51, 1105 (1988)CrossRefMathSciNetGoogle Scholar
  20. Lebon, G., Jou, D. and Casas-Vazquez, J., Contemporary Physics, 33, 41 (1992)CrossRefGoogle Scholar
  21. Jou, D., Casas-Vazquez, J. and Lebon, G., Extended Irreversible Thermodynamics, Springer, Berlin, 1993.CrossRefMATHGoogle Scholar
  22. 20.
    Joseph, O. and Preziosi, L., Rev. Mod. Phys. 61, 41 (1989).CrossRefMATHMathSciNetGoogle Scholar
  23. 21.
    Luikov, A., Bubnov, V. and Soloviev, A., Int. J. Heat Mass Transfer 19, 245 (1976).CrossRefGoogle Scholar
  24. 22.
    Guyer, R. and Krumhansl, J., Phys. Rev., 133, 1411 (1964).CrossRefGoogle Scholar
  25. 23.
    Lebon, G. in Recent Developments in Mechanics of Solids. CISM, Courses and Lectures (Lebon, G. and Perzyna, P. eds) vol 262, 221, Springer, Berlin, 1980CrossRefGoogle Scholar
  26. 23a.
    Finlayson, B., The Method of Weighted Residuals and Variational Principles. Acad. Press, New York, 1972.MATHGoogle Scholar
  27. 24.
    Casas-Vazquez, J. and Jou, D., Acta Phys. Hungarica 66, 99, (1989).Google Scholar
  28. 25.
    Meixner in Foundations of Continuum Thermodynamics (Delgado-Domingos, Nina and Whitelaw, eds) Wiley, New York, 1973.Google Scholar
  29. 26.
    Müller, I., Arch. Rat. Mech. Anal. 41, 319 (1971).MATHGoogle Scholar
  30. 27.
    Muschik, W., Arch. Rat. Mech. Anal. 4, 379 (1977), and these lectures notes.CrossRefMathSciNetGoogle Scholar
  31. 28.
    Thomson, W., Phil. Mag. 33, 313 (1848).Google Scholar
  32. 29.
    Chapman, S. and Cowling, T., The Mathematical Theory of Nonuniform Gases. Cambridge Univ. Press, 1970.Google Scholar
  33. 30.
    Reichl, L., A Modern Course in Statistical Mechanics. Texas Univ. Press, Austin, 1982.Google Scholar
  34. 31.
    Suhubi, E., in Continuum Physics (A. C. Eringen ed.), vol. II, 173, Acad. Press, New York, 1975.Google Scholar
  35. 32.
    Chadwick, P., in Progress in Solid Mechanics (I. Sneddon ed.), Vol. I, 265, North-Holland, Amsterdam 1964.Google Scholar
  36. 33.
    Lord, H. and Shulman, Y., J. Mech. Phys. Solids 15, 299 (1967).CrossRefMATHGoogle Scholar
  37. 34.
    Green, A. and Lindsay, K., J. of Elasticity 2, 1 (1972).CrossRefMATHGoogle Scholar
  38. 35.
    Meixner, J., Z. Naturforschung 9, 654 (1954).MATHGoogle Scholar
  39. 36.
    Kluitenberg, G., in Non-equilibrium Therodynamics. Variational Techniques, and Stability (R. Donnelly, R. Herman, I. Prigogine, eds.), 91, University Chicago Press, Chicago, 1966.Google Scholar
  40. 37.
    Bataille, J. and Kestin, J., J. de Mécanique 14, 365 (1975).MATHMathSciNetGoogle Scholar
  41. 38.
    Rivlin, R. and Ericksen, J., J. Rat. Mech. Anal. 4, 323 (1955).MATHMathSciNetGoogle Scholar
  42. 39.
    Koh, S. and Eringen, C., Int. J. Engng. Sci. 1, 199 (1963).CrossRefMathSciNetGoogle Scholar
  43. 40.
    Huilgol, R. and Phan-Thien, N., Int. J. Engng. Sci. 24, 161 (1986).CrossRefMATHMathSciNetGoogle Scholar
  44. 41.
    Lebon, G., Perez-Garcia, C. and Casas-Vazquez, J., J. Chem. Phys. 88, 5068 (1988).CrossRefMathSciNetGoogle Scholar
  45. 42.
    Lambermont, J. and Lebon, G., Int. J. Non-linear Mech. 9, 55 (1974).CrossRefMATHGoogle Scholar
  46. 43.
    Coleman, B. and Gurtin, M., J. Chem. Phys. 47, 597 (1964).CrossRefGoogle Scholar
  47. 44.
    Kestin, J. and Bataille, J., In Continuum Models of Discrete Systems. Univ. of Waterloo Press, 1980.Google Scholar
  48. 45.
    Maugin, G. and Drouot, R., Int. J. Engng. Sci. 21, 705 (1983), and these lectures notes.CrossRefMATHMathSciNetGoogle Scholar
  49. 46.
    Bampi, F. and Morro, A., in Lecture Notes in Physics. Vol 199 (Casas-Vazquez, J., Jou, D. and Lebon, G., eds.). Springer, Berlin, 1984.Google Scholar
  50. 47.
    Lebon, G. and Cloot, A., J. Non Newt. Fluid Mech. 28, 61 (1988).CrossRefMATHGoogle Scholar
  51. 48.
    Lebon, G., Dauby, P., Palumbo, A. and Valenti, G., Rheol. Acta 29, 127 (1990).CrossRefMATHGoogle Scholar
  52. 49.
    Lebon, G., in Advances in Thermodynamics Series. Extended Thermodynamic Systems, Vol 7, 310 (Sieniutycz, S. and Salomon, P., eds), Taylor and Francis, Bristol, 1992.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • G. Lebon
    • 1
  1. 1.Liège UniversityLiègeBelgium

Personalised recommendations