After a brief introduction on the application of finite elements and finite difference equation techniques in the field of ultrasonic characterization of materials, a simulation method, based on the use of highly parallel computers, is discussed. The versatility and efficiency of this novel numerical approach make it very suitable for important applications, such as the analysis of Epstein layers, composite materials and acoustic tomography.


Numerical Technique Acoustic Tomography Iteration Equation Finite Difference Equation Multilayered Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Noor, A.K., Appl. Mech. Rev. 44, 307 (1991).CrossRefGoogle Scholar
  2. 2.
    Lord, W., Ludwig, R. and Z. You, J. of Nondestr. Ev. 9,129 (1990).CrossRefGoogle Scholar
  3. 3.
    Harumi, K. and M. Uchida, J. of Nondestr. Ev. 9, 81 (1990).CrossRefGoogle Scholar
  4. 4.
    Ungar A. and A. Dan, J. Geophys. 43, 33 (1970).Google Scholar
  5. 5.
    Rusanov, V.V., J. Comp. Phys. 5,507 (1970).CrossRefGoogle Scholar
  6. 6.
    Boore, D.M., in: Methods in Computational Phys. (Ed.B.A. Bolt), Academic Press 1972, Vol. 11, 1.Google Scholar
  7. 7.
    Alford, R.M., Kelly, K.R. and D.M. Boore, Geophys. 39, 834 (1974).CrossRefGoogle Scholar
  8. 8.
    Huang, C.H. and J.H. Cushman, J. Comp. Phys. 40, 376 (1981).CrossRefGoogle Scholar
  9. 9.
    Virieux, J., Geophys. 49, 1033 (1984).CrossRefGoogle Scholar
  10. 10.
    Terki-Hassaine, O. and E.L. Leiss, Int. J. Supercomp. Appl. 2,49 (1988).CrossRefGoogle Scholar
  11. 11.
    Denning, P.J. and W.F. Tichy, Science 250,1222 (1990).CrossRefGoogle Scholar
  12. 12.
    Courant, R., Friedrichs, K. and H. Lewy, Math. Ann. 100,32–74 (1928).CrossRefGoogle Scholar
  13. 13.
    Hildebrand, F.B.: Methods of Applied Mathematics, Prentice Hall 1958.Google Scholar
  14. 14.
    Carnahan, B., Luther, H.A., Wilkes J.O.: Applied Numerical Methods, J. Wiley 1969.Google Scholar
  15. 15.
    Ames, W.F.: Numerical Methods for Partial Differential Equations, Academic Press. 1977.Google Scholar
  16. 16.
    Press, W.H., Flannery, B.P., Teukolsky, S.A. and W.T. Vetterling: Numerical Recipes, Cambridge Univ. Press. 1986.Google Scholar
  17. 17.
    Hildebrand, F.B.: Finite-Difference Equations and Simulation, Prentice Hall 1968.Google Scholar
  18. 18.
    Noye, J., in: Numerical Solutions of Partial Differential Equations, North-Holland 1982.Google Scholar
  19. 19.
    Siegmann, W.L., Lee, D. and G. Botseas, in: Computational Acoustics, Elsevier Sei. 91–109, (1988).Google Scholar
  20. 20.
    Mikens, R.E., Computational Acoustics, Elsevier Sei., p. 387–93 (1988).Google Scholar
  21. 21.
    Eringen A.C. and E.S. Suhubi: Elastodynamics, Academic Press., 1974, vol. 1.Google Scholar
  22. 22.
    Achenbach, J.D.: Wave Propagation in Elasic Solids, North Holland, 1973.Google Scholar
  23. 23.
    Delsanto, P.P., Chaskelis, H.H., Mignogna, R.B., Whitcombe, T.V. and R.S. Schechter, to appear in the Proc. of the 18th “Annual Review of Progress in Quantitative NDE, Brunswick, July 1991.Google Scholar
  24. 24.
    Hillis, D.W.: The Connection Machine, The MIT Press, 1985.Google Scholar
  25. 25.
    Delsanto, P.P., Whitcombe, T., Chaskelis, H.H. and R.B. Mignogna, to appear in: Wave Motion, 1992.Google Scholar
  26. 26.
    Delsanto, P.P., H.H. Chaskelis, Whitcombe T. and R.B. Mignogna, in: Nondestructive Characterization of Materials (Eds. CO. Ruud, R.E. Green and J.F. Bussiere), Plenum Press, 1991, Vol.4.Google Scholar
  27. 27.
    Delsanto, P.P., Whitcombe, T., Batra, N.K., Chaskelis, H.H. and R.B. Mignogna, in: Review of Progress in QNDE (Eds. D.O. Thompson and D.E. Chimenti), Plenum Press, Vol. 10A, 38, 241 (1991).Google Scholar
  28. 28.
    Chaskelis, H.H. and A.V. Clark, Mat. Eval. 38, 20 (1980).Google Scholar
  29. 29.
    Brekhovskikh, L.M.: Waves in Layered Media, Academic Press, 1980.Google Scholar
  30. 30.
    Devaney, A.I., in: Inverse Problems of Acoustic and Elastic Waves (Eds. F. Santosa, Y.H. Pao, W.W. Symes and C. Holland), SIAM 1984, 250.Google Scholar
  31. 31.
    Mignogna, R.B., Kline, R.A., Chaskelis, H.H., Schechter, R.S. and P.P. Delsanto: Work in progress.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • P. P. Delsanto
    • 1
  1. 1.Politecnico di TorinoTorinoItaly

Personalised recommendations