Advertisement

Electromagnetic — Acoustic Transducers (EMATs)

  • R. B. Thompson
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 330)

Abstract

Electromagnetic-acoustic transducers (EMATs) are devices which can excite and detect ultrasonic waves with no contact to the surface of metal parts. The physical principles governing the operation of these devices are reviewed. Included are discussions of mechanisms of transduction, practical probe geometries, systems design, radiation characteristics in nonmagnetic and magnetic materials, and guided mode generation. The paper concludes with discussion of typical applications.

Keywords

Ultrasonic Wave Nondestructive Test Radiation Pattern Physical Acoustics Lamb Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Silk, M. G.: Ultrasonic Transducer for Nondestructive Testing, Adam Hilger, Bristol, 1984.Google Scholar
  2. 2.
    Adler, L.: Lecture notes in this volume, 1992.Google Scholar
  3. 3.
    Dobbs, E. R.: Electromagnetic Generation of Ultrasonic Waves, in: Physical Acoustics, Vol. 10, (W. P. Mason and R. N. Thurston, Eds.), Academic Press, New York, 1976, 127–193.Google Scholar
  4. 4.
    Frost, H. M.: Electromagnetic — Ultrasound Transducers: Principles, Practice and Applications, in: Physical Acoustics, Vol. 14, (W. P. Mason and R. N. Thirston. Eds.), Academic Press, New York, 1979, 179–276.Google Scholar
  5. 5.
    Thompson, R. B.: Physical Principles of Measurements with EMAT Transducers, in: Physical Acoustics, Vol. 19 (R. N. Thurston and A. D. Pierce, Eds.) Academic Press, New York, 1990, 157–200.Google Scholar
  6. 6.
    Alers, G. A., G. Huebschen, B. W. Maxfield, W. Repplinger, J. Salzburger, R. B. Thompson, and A. Willbrand: Electromagnetic Acoustic Transducers in: Nondestructive Testing Handbook, American Society for Nondestructive Testing, Columbus, OH., 1991, 326–240.Google Scholar
  7. 7.
    Scruby, C.B. and L. E. Drain: Laser Ultrasonics, Adam Hilger, Bristol, 1990.Google Scholar
  8. 8.
    Wagner, J. W.: Optical Detection of Ultrasound, in: Physical Acoustics, Vol. 19 (R. N. Thurston and A. D. Pierce, Eds.) Academic Press, New York, 1990, 201–266.Google Scholar
  9. 9.
    Scruby, C. B.: Lecture notes in this volume, 1992.Google Scholar
  10. 10.
    Thompson, R. B.: A Model for the Electromagnetic Generation and Detection of Rayleigh and Lamb Waves, in: IEEE Trans, on Sonics and Ultrason. SU-20, 1973, 340–346.Google Scholar
  11. 11.
    Moran, T. J. and R. M. Panos: in: Appl. Phys. 47, 1976, 2225–2227.CrossRefGoogle Scholar
  12. 12.
    Vasile, C. F., and R. B. Thompson: Excitation of Horizontally Polarized Shear Elastic Waves by Electromagnetic Transducers with Periodic Permanent Magnets, in: J. Appl. Phys. 50, 1979, 2583–2588.CrossRefGoogle Scholar
  13. 13.
    Auld, B. A.: General Electromechanical Reciprocity Relations Applied to the Calculation of Elastic Wave Scattering Coefficients, in: Wave Motion 1, 1979, 3–10.CrossRefGoogle Scholar
  14. 14.
    Langenberg, K. J. Lecture notes in this volume, 1992.Google Scholar
  15. 15.
    Achenbach, J. D. Lecture notes in this volume, 1992.Google Scholar
  16. 16.
    Gaerttner, M. R., W. D. Wallace and B. W. Maxfield: Experiments Relating to the Theory of Magnetic Direct Generation of Ultrasound in Metals, in: Phys. Rev. 184, 1969, 702–704.CrossRefGoogle Scholar
  17. 17.
    Miller, F., and H. Pursey: The Field and Radiation Impedance of Mechanical Radiation on the Free Surface of a Semi-infinite Isotropic Solid, in: Proc. Roy. Soc. London A-223, 1954, 521–541.CrossRefGoogle Scholar
  18. 18.
    Thompson, R. B.: The Relationship Between Radiating Body Forces and Equivalent Surface Stress: Analysis and Application to EMAT Design, in: J. Nondestr. Eval., 1, 1980, 79–85.CrossRefGoogle Scholar
  19. 19.
    Pardee, W. J., and R. B. Thompson: Half-space Radiation by EMATs, in: J. Nondestr. Eval., 1, 1980, 157–181.CrossRefGoogle Scholar
  20. 20.
    Thompson, R. B.: A Model for the Electromagnetic Generation of Ultrasonic Guided Waves in Ferromagnetic Metal Polycrystals, in: IEEE Trans, on Sonics and Ultrason., SU-25 1978, 7–15.CrossRefGoogle Scholar
  21. 21.
    Thompson, R. B.: Mechanisms of Electromagnetic Generation and Detection of Lamb Waves in Iron-Nickel Alloy Polycrystals, in: J. Appl. Phys., 48 (1977), 4942–4950.CrossRefGoogle Scholar
  22. 22.
    Wilbrand, A.: EMUS — Probes for Bulk Waves and Rayleigh Waves. Model for Sound Field and Efficiency Calculations, in: New Procedures in Nondestructive Testing, (P. Höller, Ed.) Springer-Verlag, Berlin, 1983, 71–80.CrossRefGoogle Scholar
  23. 23.
    Wilbrand, A.: Quantitative Modeling and Experimental Analysis of the Physical Properties of Electromagnetic — Ultrasonic Transducers, in: Review of Progress in Quantitative Nondestructive Evaluation, Vol. 7A (D. O. Thompson and D. E. Chimenti, Eds.), Plenum Press, New York, 1987, 671–680.Google Scholar
  24. 24.
    Berlincourt, D. A., D. R. Curran, and H. Jaffe: Piezoelectric and Piezomagnetic Materials and Their Function in Transduction, in: Physical Acoustics, Vol. 1A, (W. P. Mason, ed.), Academic Press, New York, 169–270.Google Scholar
  25. 25.
    Thompson, R. B.: Generation of Horizontally Polarized Shear Waves in Ferromagnetic Materials Using Magnetostrictive Coupled, Meander-Coil Electromagnetic Transducers, in: Appl. Phys. Lett., 34 (1979), 175–177.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • R. B. Thompson
    • 1
  1. 1.Iowa State UniversityAmesUSA

Personalised recommendations