Skip to main content

Ultrasound in Solids with Porosity, Microcracking and Polycrystalline Structuring

  • Chapter
The Evaluation of Materials and Structures by Quantitative Ultrasonics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 330))

Abstract

The scattering of an ultrasonic wave in an elastically inhomogeneous medium results in a frequency dependent velocity and attenuation of the wave. The ultrasonic attenuation and dispersion are therefore sensitive to the microstructure of the material. Since the microstructure also has an important effect on material properties there is considerable interest in the development of ultrasonic techniques for the determination of fracture toughness, hardness, impact strength, yield strength and tensile strength for example [1]. Variations in the microstructure within a sample and from sample to sample may arise from composition fluctuations, inclusions, grain growth due to faulty heat treatment, incorrect fibre fraction in composites, porosity and microcracking. In contrast to the elastic constants of the material, which can be obtained from ultrasonic measurements at a single frequency, the determination of the above mentioned properties requires the measurement of the frequency dependence of the velocity or attenuation. An example is the use of ultrasonics to predict the yield strength of plain carbon steel [2]. This prediction is based on the Hall-Petch relations, which relate the yield strength and impact transition temperature to the mean grain size, an important parameter determining the frequency dependence of the ultrasonic attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. SAYERS, C.M., Characterisation of microstructures using ultrasonics, in Ultrasonic Methods in Evaluation of Inhomogeneous Materials edited by A. Alippi and W.G. Mayer, pp 175–183, Martinus Nijhoff, 1987.

    Chapter  Google Scholar 

  2. KLINMAN, R., WEBSTER, G.R., MARSH, F.J. AND STEPHENSON, E.T. (1980) Ultrasonic prediction of grain size, strength and toughness in plain carbon steel, Mat. Eval., 38, 26.

    Google Scholar 

  3. YING, C.F. AND TRUELL, R. (1956) Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid, J. Appl. Phys., 27, 1086–1097.

    Article  Google Scholar 

  4. FOLDY, L.L. (1945) The multiple scattering of waves, Phys. Rev, 67 107–119.

    Article  Google Scholar 

  5. LAX, M. (1952) Multiple scattering of waves II. The effective field in dense systems, Phys. Rev., 85, 621–629.

    Article  Google Scholar 

  6. URICK, R.J. AND AMENT, W.S. (1949) The propagation of sound in composite media, J. Acoust. Soc. Am., 21, 115–119.

    Article  Google Scholar 

  7. WATERMAN, P.C. AND TRUELL, R. (1961) Multiple scattering of waves, J. Math. Phys., 2,512–537.

    Article  Google Scholar 

  8. TWERSKY, V. (1962) J. Opt. Soc. Am., 52, 145.

    Article  Google Scholar 

  9. LLOYD, P. AND BERRY, M.V. (1967) Proc. Phys. Soc., 91, 678.

    Article  Google Scholar 

  10. SAYERS, C.M. AND SMITH, R.L. (1983) Ultrasonic velocity and attenuation in an epoxy matrix containing lead inclusions, J. Phys. D, 16, 1189–1194.

    Article  Google Scholar 

  11. KINRA, V.K., KER, E. AND DATTA, S.K. (1982) Mech. Res. Comm., 9, 109.

    Article  Google Scholar 

  12. SAYERS, C.M. (1981) Ultrasonic velocity dispersion in porous materials, J. Phys. D, 14, 413–420.

    Article  Google Scholar 

  13. LLOYD, P. (1967) Proc. Phys. Soc., 90, 207.

    Article  Google Scholar 

  14. LLOYD, P. (1967) Proc. Phys. Soc., 90, 217.

    Article  Google Scholar 

  15. SAYERS, C.M. (1980) On the propagation of ultrasound in highly concentrated mixtures and suspensions, J. Phys. D, 13, 179–184.

    Article  Google Scholar 

  16. SAYERS, C.M. AND SMITH, R.L. (1982) The propagation of ultrasound in porous media, Ultrasonics, 20, 201–205.

    Article  Google Scholar 

  17. SAYERS, C.M. AND TAIT, C.E. (1984) Ultrasonic properties of transducer backings, Ultrasonics, 22, 57–60.

    Article  Google Scholar 

  18. TITTMAN, B.R., MORRIS, W.L. AND RICHARDSON, J.M. (1980) Appl. Phys. Lett., 36, 199.

    Article  Google Scholar 

  19. FRANZBLAU, M.C. AND KRAFT, D.W. (1971) J. Appl. Phys., 42, 5261.

    Article  Google Scholar 

  20. PAPADAKIS, E.P. AND PETERSEN, B.W. (1979) Ultrasonic velocity as a predictor of density in sintered powder meta parts, Mat. Evai, 37, 76.

    Google Scholar 

  21. REYNOLDS, W.N. AND WILKINSON, S.J. (1977) A.E.R.E. Report R8974.

    Google Scholar 

  22. NAGARAJAN, A. (1971) J. Appl. Phys., 42, 3693.

    Article  Google Scholar 

  23. RANACHOWSKI, J. (1971) Proc Conf. on Acoustics of Solid Media, Warsaw ed L. Filipczynski et al. p203.

    Google Scholar 

  24. WINKLER, K.W. (1983) Frequency dependent ultrasonic properties of high-porosity sandstones, J. Geophys. Res. B, 88, 9493–9499.

    Article  Google Scholar 

  25. ELLIOT, R.J., KRUMHANSL, J.A. AND LEATH, P.L. (1974) The theory and properties of randomly disordered crystals and related physical systems, Rev. Mod. Phys., 46, 465–543.

    Article  Google Scholar 

  26. BERRYMAN, J.G. (1979) Theory of elastic properties of composite materials, Appl. Phys. Leu., 35, 856–858.

    Article  Google Scholar 

  27. BERRYMAN, J.G. (1979) Long-wavelength propagation in composite elastic media I. Spherical inclusions, J. Acoust. Soc. Am., 68, 1809–1819.

    Article  Google Scholar 

  28. BERRYMAN, J.G. (1979) Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions, J. Acoust. Soc. Am., 68, 1820–1831.

    Article  Google Scholar 

  29. THOMPSON, R.B., SPITZIG, W.A. AND GRAY, T.A. Relative effects of porosity and grain size on ultrasonic wave propagation in iron compacts.

    Google Scholar 

  30. BOOCOCK, J., FURZER, A.S. AND MATTHEWS, J.R. (1972) The effect of porosity on the elastic moduli of CO2 as measured by an ultrasonic technique, A.E.R.E. Report M2565.

    Google Scholar 

  31. O’CONNELL, R.J. AND BUDIANSKY, B. (1974) Seismic velocities in dry and saturated cracked solids, J. Geophys. Res., 79, 5412–5426.

    Article  Google Scholar 

  32. BUDIANSKY, B. AND O’CONNELL, R.J. (1976) Elastic moduli of a cracked solid, Int. J. Solids Structures, 12, 81–97.

    Article  Google Scholar 

  33. HOENIG, A. (1979) Elastic moduli of a non-randomly cracked body, Int. J. Solids Structures, 15, 137–154.

    Article  Google Scholar 

  34. BRUNER, W.M. (1976) Comment on ‘Seismic velocities in dry and saturated cracked solids’ by R.J. O’Connell and B. Budiansky, J. Geophys. Res., 81, 2573–2576.

    Article  Google Scholar 

  35. HENYEY, F.S. AND POMPHREY, N. (1982) Self-consistent moduli of a cracked solid, Geophys. Res. Lett., 9, 903–906.

    Article  Google Scholar 

  36. HUDSON, J.A. (1980) Overall properties of a cracked solid, Math. Proc. Camb. Phil. Soc, 88 371–384.

    Article  Google Scholar 

  37. HUDSON, J.A. (1981) Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. Royal Astr. Soc, 64, 133–150.

    Article  Google Scholar 

  38. HUDSON, J.A. (1986) A higher order approximation to the wave propagation constants for a cracked solid, Geophys. J. Royal Astr. Soc., 87, 265–274.

    Article  Google Scholar 

  39. HILL, R. (1963) Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 357–372.

    Article  Google Scholar 

  40. SAYERS, C.M. AND KACHANOV, M. (1991) A simple technique for finding effective elastic constants of cracked solids for arbitrary crack orientation statistics, Int. J. Solids Structures, 12, 81–97.

    Google Scholar 

  41. ESHELBY, J.D. (1957), The determination of the elastic field of an Ellipsoidal inclusion and related problems. Proc. Roy. Soc, A241, 376–396.

    Article  Google Scholar 

  42. HOENIG, A. (1978) The behaviour of a flat elliptical crack in an anisotropic body, Int. J. solids Structures, 14, 925–934.

    Article  Google Scholar 

  43. CHARLAIX, E. (1986) Percolation threshold of a random array of discs: a numerical simulation, J. Phys. A, 19, L351-L354.

    Article  Google Scholar 

  44. LAWS, N. AND DVORAK, G.J. (1987) The effect of fibre breaks and aligned penny-shaped cracks on the stiffness and energy release rates in unidirectional composites, Int. J. Solids Structures, 23, 1269–1283.

    Article  Google Scholar 

  45. MILTON, G. (1984) The coherent potential approximation is a realizable effective medium scheme, preprint.

    Google Scholar 

  46. NORRIS, A.N. (1985) A differential scheme for the effective moduli of composites. Mechanics of Materials, 4, 1–16.

    Article  Google Scholar 

  47. SAYERS, C.M. (1988a) Inversion of ultrasonic wave velocity measurements to obtain the microcrack orientation distribution function in rocks, Ultrasonics, 26, 73–77.

    Article  Google Scholar 

  48. SAYERS, C.M. (1988b) Stress-induced ultrasonic wave velocity anisotropy in fractured rock, Ultrasonics, 26, 311–317.

    Article  Google Scholar 

  49. ROE, R.J. (1964) Description of crystallite orientation in polycrystalline materials having fibre texture, J. Chem. Phys., 40, 2608–2615.

    Article  Google Scholar 

  50. ROE, R.J. (1965) Description of crystallite orientation in polycrystalline materials — III: General solution to pole figure inversion, J. Appl. Phys., 36, 2024–2031.

    Article  Google Scholar 

  51. ROE, R.J. (1966) Inversion of pole figures for materials having cubic crystal symmetry, J. AppL Phys., 37, 2069–2072.

    Article  Google Scholar 

  52. MORRIS, P.R. (1969) Averaging fourth-rank tensors with weight functions. J. Appl. Phys., 40, 447–448.

    Article  Google Scholar 

  53. MUSGRAVE, M.J.P., Crystal Acoustics, Holden-Day, San Fransisco, 1970.

    Google Scholar 

  54. BIRCH, F. (1960) The velocity of compressional waves in rocks to 10 kilobars. Part 1, J. Geophys. Res., 65, 1083–1102.

    Article  Google Scholar 

  55. BIRCH, F. (1961) The velocity of compressional waves in rocks to 10 kilobars. Part 2, J. Geophys. Res., 66, 2199–2224.

    Article  Google Scholar 

  56. THILL, R.E., WILLARD, R.J. and BUR, T.R. (1969) Correlation of longi-tudinal velocity variation with rock fabric, J. Geophys. Res., 74, 4897–4909.

    Article  Google Scholar 

  57. BATZLE, M.L., SIMMONS, G. and SIEGFRIED, R.W. (1980) Microcrack closure in rocks under stress: direct observation, J. Geophys. Res., 85, 7072–7090.

    Article  Google Scholar 

  58. NUR, A. and G. SIMMONS, Stress-induced velocity anisotropy in rock: an experimental study, J. Geophys. Res., 74, 6667–6674, 1969.

    Article  Google Scholar 

  59. PATERSON, M.S., Experimental Rock Deformation — The Brittle Field, Springer, Berlin, 254 pp., 1978.

    Book  Google Scholar 

  60. KRANZ, R.L., Microcracks in rock: A review, Tectonophysics 100, 449–480, 1983.

    Article  Google Scholar 

  61. SAYERS, C.M. and J.G. van MUNSTER, Microcrack-induced seismic anisotropy of sedimentary rocks, accepted for publication in J. Geophys. Res.

    Google Scholar 

  62. SAYERS, C.M., J.G. VAN MUNSTER and M.S. KING, Stress-induced ultrasonic anisotropy in Berea sandstone, Int. J. Rock Mech., 27, 429–436, 1990.

    Article  Google Scholar 

  63. CASTAGNA, J.P., M.L. BATZLE and R.L. EASTWOOD, Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks, Geophysics, 50, 571–581, 1985.

    Article  Google Scholar 

  64. LO, T., K.B. COYNER and M.N. TOKSOZ, Experimental determination of elastic anisotropy of Berea sandstone, Geophysics, 51, 164–171, 1986.

    Article  Google Scholar 

  65. HATHERLEY, M. and HUTCHINSON, W.B., An introduction to textures in metals, monograph no. 5, London, Institution of Metallurgists.

    Google Scholar 

  66. HUTCHINSON, W.B., (1984) Int. Metall. Rev., 29, 25–42.

    Google Scholar 

  67. STICKELS, C.A. and MOULD, P.R., (1970) Met. Trans., 1, 1303–1312.

    Google Scholar 

  68. DAVIES, G.J., GOODWILL, D.J. and KALLEND, J.S. (1972) Met. Trans., 3, 1627–1631.

    Article  Google Scholar 

  69. SAYERS, C.M. (1982) Ultrasonic velocities in anisotropic polycrystalline aggregates, J. Phys. D, 15, 2157–2167.

    Article  Google Scholar 

  70. SAYERS, C.M. (1986) Angular dependent ultrasonic wave velocities in aggregates of hexagonal crystals, Ultrasonics 24, 289–291.

    Article  Google Scholar 

  71. SAYERS, C.M. (1987) The elastic anisotropy of polycrystalline aggregates of Zirconium and its alloys, J. Nucl. Mat. 144, 211–213

    Article  Google Scholar 

  72. SAYERS, C.M. (1987) Elastic wave anisotropy in the upper mantle, Geo-phys. J. Roy. Astr. Soc. 88, 417–424

    Article  Google Scholar 

  73. SAYERS, C.M. (1987) Orientation of olivine in dunite from elastc wave velocity measurements, Geophys. Res. Lett. 14, 1050–1052.

    Article  Google Scholar 

  74. BUNGE, H.J. (1965) Z. Metallic., 56, 872.

    Google Scholar 

  75. BUNGE, H.J. (1968) Krist. Tech., 3, 431.

    Article  Google Scholar 

  76. PURSEY, H. and COX, H.L. (1954) Phil. Mag., 45, 295.

    Google Scholar 

  77. HILL, R. (1957) The elastic behaviour of a crystaline aggregate, Proc. Phys. Soc, A65, 349–354.

    Article  Google Scholar 

  78. SAYERS, C.M. and PROUDFOOT, G.G. (1986) Angular dependence of the ultrasonic SH wave velocity in rolled metal sheets, J. Mech. Phys. Solids 34, 579–592.

    Article  Google Scholar 

  79. SAYERS, C.M. Texture independent determination of residual stress in polycrystalline aggregates using Rayleigh waves. J. Phys. D., L179-L184 (1984).

    Google Scholar 

  80. SAYERS C.M. Angular dependence of the Rayleigh surface velocity in polycrystalline metals with small anisotropy. Proc. Roy. Soc. A 400, 175–182 (1985).

    Article  Google Scholar 

  81. SAYERS, C.M., ALLEN, D.R., HAINES, G.E. and PROUDFOOT, G.G., Texture and stress determination in metals by using ultrasonic Rayleigh waves and neutron diffraction, Phil. Trans. Royal Soc. 320, 187–200 (1986).

    Article  Google Scholar 

  82. ALLEN D.R., LANGMAN R. and SAYERS C.M. Ultrasonic SH wave velocity in textured aluminium plates. Ultrasonics, September 1985, 215–222.

    Google Scholar 

  83. ALLEN, A.J., HUTCHINGS, M.T., SAYERS, C.M., ALLEN, D.R. and SMITH, R.L. (1983) Use of neutron diffraction texture measurements to establish a model for calculation of ultrasonic velocities in highly oriented austenitic weld material, J. Appl. Phys., 54, 555–560.

    Article  Google Scholar 

  84. ALLEN, D.R. and LANGMAN, R. (1985) AERE-R11573.

    Google Scholar 

  85. LANGMAN, R. and ALLEN, D.R. (1985) AERE-R11598.

    Google Scholar 

  86. KUPPERMAN, D.S. and REIMANN, K.J., (1980) I.E.E.E. Trans Sonics Ultrasonics SU-27, 7.

    Google Scholar 

  87. MACDONALD, D.E., (1981) I.E.E.E. Trans Sonics Ultrasonics SU-28, 75.

    Google Scholar 

  88. BIOT, M.A., (1940) J. Appl. Phys. 11, 522.

    Article  Google Scholar 

  89. THURSTON, R.N., (1965) J. Acoust. Soc. Am 37, 348.

    Article  Google Scholar 

  90. THOMPSON, R.B., SMITH, J.F. and LEE, S.S. (1983) Rev. Prog. NDE 2, ed. D.O. Thompson and D.E. Chimenti, Plenum Press, New York.

    Google Scholar 

  91. THOMPSON, R.B., LEE, S.S. and SMITH, J.F. (1984) Rev. Prog. NDE 3, ed. D.O. Thompson and D.E. Chimenti, Plenum Press, New York.

    Google Scholar 

  92. LEE, S.S., SMITH, J.F. and THOMPSON, R.B., (1985) Rev. Prog. NDE 4, ed. D.O. Thompson and D.E. Chimenti, Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this chapter

Cite this chapter

Sayers, C.M. (1993). Ultrasound in Solids with Porosity, Microcracking and Polycrystalline Structuring. In: The Evaluation of Materials and Structures by Quantitative Ultrasonics. CISM International Centre for Mechanical Sciences, vol 330. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4315-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4315-5_17

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82441-2

  • Online ISBN: 978-3-7091-4315-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics