Ultrasound in Solids with Porosity, Microcracking and Polycrystalline Structuring

  • C. M. Sayers
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 330)


The scattering of an ultrasonic wave in an elastically inhomogeneous medium results in a frequency dependent velocity and attenuation of the wave. The ultrasonic attenuation and dispersion are therefore sensitive to the microstructure of the material. Since the microstructure also has an important effect on material properties there is considerable interest in the development of ultrasonic techniques for the determination of fracture toughness, hardness, impact strength, yield strength and tensile strength for example [1]. Variations in the microstructure within a sample and from sample to sample may arise from composition fluctuations, inclusions, grain growth due to faulty heat treatment, incorrect fibre fraction in composites, porosity and microcracking. In contrast to the elastic constants of the material, which can be obtained from ultrasonic measurements at a single frequency, the determination of the above mentioned properties requires the measurement of the frequency dependence of the velocity or attenuation. An example is the use of ultrasonics to predict the yield strength of plain carbon steel [2]. This prediction is based on the Hall-Petch relations, which relate the yield strength and impact transition temperature to the mean grain size, an important parameter determining the frequency dependence of the ultrasonic attenuation.


Wave Velocity Pole Figure Ultrasonic Velocity Orientation Distribution Function Crack Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    SAYERS, C.M., Characterisation of microstructures using ultrasonics, in Ultrasonic Methods in Evaluation of Inhomogeneous Materials edited by A. Alippi and W.G. Mayer, pp 175–183, Martinus Nijhoff, 1987.CrossRefGoogle Scholar
  2. [2]
    KLINMAN, R., WEBSTER, G.R., MARSH, F.J. AND STEPHENSON, E.T. (1980) Ultrasonic prediction of grain size, strength and toughness in plain carbon steel, Mat. Eval., 38, 26.Google Scholar
  3. [3]
    YING, C.F. AND TRUELL, R. (1956) Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid, J. Appl. Phys., 27, 1086–1097.CrossRefGoogle Scholar
  4. [4]
    FOLDY, L.L. (1945) The multiple scattering of waves, Phys. Rev, 67 107–119.CrossRefGoogle Scholar
  5. [5]
    LAX, M. (1952) Multiple scattering of waves II. The effective field in dense systems, Phys. Rev., 85, 621–629.CrossRefGoogle Scholar
  6. [6]
    URICK, R.J. AND AMENT, W.S. (1949) The propagation of sound in composite media, J. Acoust. Soc. Am., 21, 115–119.CrossRefGoogle Scholar
  7. [7]
    WATERMAN, P.C. AND TRUELL, R. (1961) Multiple scattering of waves, J. Math. Phys., 2,512–537.CrossRefGoogle Scholar
  8. [8]
    TWERSKY, V. (1962) J. Opt. Soc. Am., 52, 145.CrossRefGoogle Scholar
  9. [9]
    LLOYD, P. AND BERRY, M.V. (1967) Proc. Phys. Soc., 91, 678.CrossRefGoogle Scholar
  10. [10]
    SAYERS, C.M. AND SMITH, R.L. (1983) Ultrasonic velocity and attenuation in an epoxy matrix containing lead inclusions, J. Phys. D, 16, 1189–1194.CrossRefGoogle Scholar
  11. [11]
    KINRA, V.K., KER, E. AND DATTA, S.K. (1982) Mech. Res. Comm., 9, 109.CrossRefGoogle Scholar
  12. [12]
    SAYERS, C.M. (1981) Ultrasonic velocity dispersion in porous materials, J. Phys. D, 14, 413–420.CrossRefGoogle Scholar
  13. [13]
    LLOYD, P. (1967) Proc. Phys. Soc., 90, 207.CrossRefGoogle Scholar
  14. [14]
    LLOYD, P. (1967) Proc. Phys. Soc., 90, 217.CrossRefGoogle Scholar
  15. [15]
    SAYERS, C.M. (1980) On the propagation of ultrasound in highly concentrated mixtures and suspensions, J. Phys. D, 13, 179–184.CrossRefGoogle Scholar
  16. [16]
    SAYERS, C.M. AND SMITH, R.L. (1982) The propagation of ultrasound in porous media, Ultrasonics, 20, 201–205.CrossRefGoogle Scholar
  17. [17]
    SAYERS, C.M. AND TAIT, C.E. (1984) Ultrasonic properties of transducer backings, Ultrasonics, 22, 57–60.CrossRefGoogle Scholar
  18. [18]
    TITTMAN, B.R., MORRIS, W.L. AND RICHARDSON, J.M. (1980) Appl. Phys. Lett., 36, 199.CrossRefGoogle Scholar
  19. [19]
    FRANZBLAU, M.C. AND KRAFT, D.W. (1971) J. Appl. Phys., 42, 5261.CrossRefGoogle Scholar
  20. [20]
    PAPADAKIS, E.P. AND PETERSEN, B.W. (1979) Ultrasonic velocity as a predictor of density in sintered powder meta parts, Mat. Evai, 37, 76.Google Scholar
  21. [21]
    REYNOLDS, W.N. AND WILKINSON, S.J. (1977) A.E.R.E. Report R8974.Google Scholar
  22. [22]
    NAGARAJAN, A. (1971) J. Appl. Phys., 42, 3693.CrossRefGoogle Scholar
  23. [23]
    RANACHOWSKI, J. (1971) Proc Conf. on Acoustics of Solid Media, Warsaw ed L. Filipczynski et al. p203.Google Scholar
  24. [24]
    WINKLER, K.W. (1983) Frequency dependent ultrasonic properties of high-porosity sandstones, J. Geophys. Res. B, 88, 9493–9499.CrossRefGoogle Scholar
  25. [25]
    ELLIOT, R.J., KRUMHANSL, J.A. AND LEATH, P.L. (1974) The theory and properties of randomly disordered crystals and related physical systems, Rev. Mod. Phys., 46, 465–543.CrossRefGoogle Scholar
  26. [26]
    BERRYMAN, J.G. (1979) Theory of elastic properties of composite materials, Appl. Phys. Leu., 35, 856–858.CrossRefGoogle Scholar
  27. [27]
    BERRYMAN, J.G. (1979) Long-wavelength propagation in composite elastic media I. Spherical inclusions, J. Acoust. Soc. Am., 68, 1809–1819.CrossRefGoogle Scholar
  28. [28]
    BERRYMAN, J.G. (1979) Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions, J. Acoust. Soc. Am., 68, 1820–1831.CrossRefGoogle Scholar
  29. [29]
    THOMPSON, R.B., SPITZIG, W.A. AND GRAY, T.A. Relative effects of porosity and grain size on ultrasonic wave propagation in iron compacts.Google Scholar
  30. [30]
    BOOCOCK, J., FURZER, A.S. AND MATTHEWS, J.R. (1972) The effect of porosity on the elastic moduli of CO2 as measured by an ultrasonic technique, A.E.R.E. Report M2565.Google Scholar
  31. [31]
    O’CONNELL, R.J. AND BUDIANSKY, B. (1974) Seismic velocities in dry and saturated cracked solids, J. Geophys. Res., 79, 5412–5426.CrossRefGoogle Scholar
  32. [32]
    BUDIANSKY, B. AND O’CONNELL, R.J. (1976) Elastic moduli of a cracked solid, Int. J. Solids Structures, 12, 81–97.CrossRefGoogle Scholar
  33. [33]
    HOENIG, A. (1979) Elastic moduli of a non-randomly cracked body, Int. J. Solids Structures, 15, 137–154.CrossRefGoogle Scholar
  34. [34]
    BRUNER, W.M. (1976) Comment on ‘Seismic velocities in dry and saturated cracked solids’ by R.J. O’Connell and B. Budiansky, J. Geophys. Res., 81, 2573–2576.CrossRefGoogle Scholar
  35. [35]
    HENYEY, F.S. AND POMPHREY, N. (1982) Self-consistent moduli of a cracked solid, Geophys. Res. Lett., 9, 903–906.CrossRefGoogle Scholar
  36. [36]
    HUDSON, J.A. (1980) Overall properties of a cracked solid, Math. Proc. Camb. Phil. Soc, 88 371–384.CrossRefGoogle Scholar
  37. [37]
    HUDSON, J.A. (1981) Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. Royal Astr. Soc, 64, 133–150.CrossRefGoogle Scholar
  38. [38]
    HUDSON, J.A. (1986) A higher order approximation to the wave propagation constants for a cracked solid, Geophys. J. Royal Astr. Soc., 87, 265–274.CrossRefGoogle Scholar
  39. [39]
    HILL, R. (1963) Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 357–372.CrossRefGoogle Scholar
  40. [40]
    SAYERS, C.M. AND KACHANOV, M. (1991) A simple technique for finding effective elastic constants of cracked solids for arbitrary crack orientation statistics, Int. J. Solids Structures, 12, 81–97.Google Scholar
  41. [41]
    ESHELBY, J.D. (1957), The determination of the elastic field of an Ellipsoidal inclusion and related problems. Proc. Roy. Soc, A241, 376–396.CrossRefGoogle Scholar
  42. [42]
    HOENIG, A. (1978) The behaviour of a flat elliptical crack in an anisotropic body, Int. J. solids Structures, 14, 925–934.CrossRefGoogle Scholar
  43. [43]
    CHARLAIX, E. (1986) Percolation threshold of a random array of discs: a numerical simulation, J. Phys. A, 19, L351-L354.CrossRefGoogle Scholar
  44. [44]
    LAWS, N. AND DVORAK, G.J. (1987) The effect of fibre breaks and aligned penny-shaped cracks on the stiffness and energy release rates in unidirectional composites, Int. J. Solids Structures, 23, 1269–1283.CrossRefGoogle Scholar
  45. [45]
    MILTON, G. (1984) The coherent potential approximation is a realizable effective medium scheme, preprint.Google Scholar
  46. [46]
    NORRIS, A.N. (1985) A differential scheme for the effective moduli of composites. Mechanics of Materials, 4, 1–16.CrossRefGoogle Scholar
  47. [47]
    SAYERS, C.M. (1988a) Inversion of ultrasonic wave velocity measurements to obtain the microcrack orientation distribution function in rocks, Ultrasonics, 26, 73–77.CrossRefGoogle Scholar
  48. [48]
    SAYERS, C.M. (1988b) Stress-induced ultrasonic wave velocity anisotropy in fractured rock, Ultrasonics, 26, 311–317.CrossRefGoogle Scholar
  49. [49]
    ROE, R.J. (1964) Description of crystallite orientation in polycrystalline materials having fibre texture, J. Chem. Phys., 40, 2608–2615.CrossRefGoogle Scholar
  50. [50]
    ROE, R.J. (1965) Description of crystallite orientation in polycrystalline materials — III: General solution to pole figure inversion, J. Appl. Phys., 36, 2024–2031.CrossRefGoogle Scholar
  51. [51]
    ROE, R.J. (1966) Inversion of pole figures for materials having cubic crystal symmetry, J. AppL Phys., 37, 2069–2072.CrossRefGoogle Scholar
  52. [52]
    MORRIS, P.R. (1969) Averaging fourth-rank tensors with weight functions. J. Appl. Phys., 40, 447–448.CrossRefGoogle Scholar
  53. [53]
    MUSGRAVE, M.J.P., Crystal Acoustics, Holden-Day, San Fransisco, 1970.Google Scholar
  54. [54]
    BIRCH, F. (1960) The velocity of compressional waves in rocks to 10 kilobars. Part 1, J. Geophys. Res., 65, 1083–1102.CrossRefGoogle Scholar
  55. [55]
    BIRCH, F. (1961) The velocity of compressional waves in rocks to 10 kilobars. Part 2, J. Geophys. Res., 66, 2199–2224.CrossRefGoogle Scholar
  56. [56]
    THILL, R.E., WILLARD, R.J. and BUR, T.R. (1969) Correlation of longi-tudinal velocity variation with rock fabric, J. Geophys. Res., 74, 4897–4909.CrossRefGoogle Scholar
  57. [57]
    BATZLE, M.L., SIMMONS, G. and SIEGFRIED, R.W. (1980) Microcrack closure in rocks under stress: direct observation, J. Geophys. Res., 85, 7072–7090.CrossRefGoogle Scholar
  58. [58]
    NUR, A. and G. SIMMONS, Stress-induced velocity anisotropy in rock: an experimental study, J. Geophys. Res., 74, 6667–6674, 1969.CrossRefGoogle Scholar
  59. [59]
    PATERSON, M.S., Experimental Rock Deformation — The Brittle Field, Springer, Berlin, 254 pp., 1978.CrossRefGoogle Scholar
  60. [60]
    KRANZ, R.L., Microcracks in rock: A review, Tectonophysics 100, 449–480, 1983.CrossRefGoogle Scholar
  61. [61]
    SAYERS, C.M. and J.G. van MUNSTER, Microcrack-induced seismic anisotropy of sedimentary rocks, accepted for publication in J. Geophys. Res. Google Scholar
  62. [62]
    SAYERS, C.M., J.G. VAN MUNSTER and M.S. KING, Stress-induced ultrasonic anisotropy in Berea sandstone, Int. J. Rock Mech., 27, 429–436, 1990.CrossRefGoogle Scholar
  63. [63]
    CASTAGNA, J.P., M.L. BATZLE and R.L. EASTWOOD, Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks, Geophysics, 50, 571–581, 1985.CrossRefGoogle Scholar
  64. [64]
    LO, T., K.B. COYNER and M.N. TOKSOZ, Experimental determination of elastic anisotropy of Berea sandstone, Geophysics, 51, 164–171, 1986.CrossRefGoogle Scholar
  65. [65]
    HATHERLEY, M. and HUTCHINSON, W.B., An introduction to textures in metals, monograph no. 5, London, Institution of Metallurgists.Google Scholar
  66. [66]
    HUTCHINSON, W.B., (1984) Int. Metall. Rev., 29, 25–42.Google Scholar
  67. [67]
    STICKELS, C.A. and MOULD, P.R., (1970) Met. Trans., 1, 1303–1312.Google Scholar
  68. [68]
    DAVIES, G.J., GOODWILL, D.J. and KALLEND, J.S. (1972) Met. Trans., 3, 1627–1631.CrossRefGoogle Scholar
  69. [69]
    SAYERS, C.M. (1982) Ultrasonic velocities in anisotropic polycrystalline aggregates, J. Phys. D, 15, 2157–2167.CrossRefGoogle Scholar
  70. [70]
    SAYERS, C.M. (1986) Angular dependent ultrasonic wave velocities in aggregates of hexagonal crystals, Ultrasonics 24, 289–291.CrossRefGoogle Scholar
  71. [71]
    SAYERS, C.M. (1987) The elastic anisotropy of polycrystalline aggregates of Zirconium and its alloys, J. Nucl. Mat. 144, 211–213CrossRefGoogle Scholar
  72. [72]
    SAYERS, C.M. (1987) Elastic wave anisotropy in the upper mantle, Geo-phys. J. Roy. Astr. Soc. 88, 417–424CrossRefGoogle Scholar
  73. [73]
    SAYERS, C.M. (1987) Orientation of olivine in dunite from elastc wave velocity measurements, Geophys. Res. Lett. 14, 1050–1052.CrossRefGoogle Scholar
  74. [74]
    BUNGE, H.J. (1965) Z. Metallic., 56, 872.Google Scholar
  75. [75]
    BUNGE, H.J. (1968) Krist. Tech., 3, 431.CrossRefGoogle Scholar
  76. [76]
    PURSEY, H. and COX, H.L. (1954) Phil. Mag., 45, 295.Google Scholar
  77. [77]
    HILL, R. (1957) The elastic behaviour of a crystaline aggregate, Proc. Phys. Soc, A65, 349–354.CrossRefGoogle Scholar
  78. [78]
    SAYERS, C.M. and PROUDFOOT, G.G. (1986) Angular dependence of the ultrasonic SH wave velocity in rolled metal sheets, J. Mech. Phys. Solids 34, 579–592.CrossRefGoogle Scholar
  79. [79]
    SAYERS, C.M. Texture independent determination of residual stress in polycrystalline aggregates using Rayleigh waves. J. Phys. D., L179-L184 (1984).Google Scholar
  80. [80]
    SAYERS C.M. Angular dependence of the Rayleigh surface velocity in polycrystalline metals with small anisotropy. Proc. Roy. Soc. A 400, 175–182 (1985).CrossRefGoogle Scholar
  81. [81]
    SAYERS, C.M., ALLEN, D.R., HAINES, G.E. and PROUDFOOT, G.G., Texture and stress determination in metals by using ultrasonic Rayleigh waves and neutron diffraction, Phil. Trans. Royal Soc. 320, 187–200 (1986).CrossRefGoogle Scholar
  82. [82]
    ALLEN D.R., LANGMAN R. and SAYERS C.M. Ultrasonic SH wave velocity in textured aluminium plates. Ultrasonics, September 1985, 215–222.Google Scholar
  83. [83]
    ALLEN, A.J., HUTCHINGS, M.T., SAYERS, C.M., ALLEN, D.R. and SMITH, R.L. (1983) Use of neutron diffraction texture measurements to establish a model for calculation of ultrasonic velocities in highly oriented austenitic weld material, J. Appl. Phys., 54, 555–560.CrossRefGoogle Scholar
  84. [84]
    ALLEN, D.R. and LANGMAN, R. (1985) AERE-R11573.Google Scholar
  85. [85]
    LANGMAN, R. and ALLEN, D.R. (1985) AERE-R11598.Google Scholar
  86. [86]
    KUPPERMAN, D.S. and REIMANN, K.J., (1980) I.E.E.E. Trans Sonics Ultrasonics SU-27, 7.Google Scholar
  87. [87]
    MACDONALD, D.E., (1981) I.E.E.E. Trans Sonics Ultrasonics SU-28, 75.Google Scholar
  88. [88]
    BIOT, M.A., (1940) J. Appl. Phys. 11, 522.CrossRefGoogle Scholar
  89. [89]
    THURSTON, R.N., (1965) J. Acoust. Soc. Am 37, 348.CrossRefGoogle Scholar
  90. [90]
    THOMPSON, R.B., SMITH, J.F. and LEE, S.S. (1983) Rev. Prog. NDE 2, ed. D.O. Thompson and D.E. Chimenti, Plenum Press, New York.Google Scholar
  91. [91]
    THOMPSON, R.B., LEE, S.S. and SMITH, J.F. (1984) Rev. Prog. NDE 3, ed. D.O. Thompson and D.E. Chimenti, Plenum Press, New York.Google Scholar
  92. [92]
    LEE, S.S., SMITH, J.F. and THOMPSON, R.B., (1985) Rev. Prog. NDE 4, ed. D.O. Thompson and D.E. Chimenti, Plenum Press, New York.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • C. M. Sayers
    • 1
  1. 1.Schlumberger Cambridge ResearchCambridgeUK

Personalised recommendations