Advertisement

Dynamic Thermal Shock Resistance

  • H. Bargmann

Abstract

When DUHAMEL /1/, in 1835, had laid down the foundations of thermo-elasticity, he had derived already the coupled heat conduction equation as well as the corresponding equations of motion. With respect to thermally induced waves and vibrations, however, he asserted the following: “I1 est donc permis, surtout à cause de la lenteur avec laquelle s’opère toujours le refroidissement, de négliger complètement ces petits mouvemens des molécules autour de leur position d’équilibre et de considérer l’équilibre comme ayant rigoureusement lieu à chaque instant, et variant avec la propagation intérieure de la chaleur...” and, moreover, he remarked “...que ces mouvemens vibratoires produiraient en chaque point des dilatations et condensations alternatives, dont les effets tendraient à se compenser”. Thus the time rate of change of temperature has been considered slow enough so that inertia effects could be disregarded in the equations of thermo-elasticity.

Keywords

Heat Supply Radiation Heating Thermal Shock Resistance Mechanical Time Intense Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duhamel, J.-M.-C.: Second mémoire sur les phénomènes thermomécaniques. Journal de l’Ecole polytechnique, Paris, 25, 31 (1837).Google Scholar
  2. 2.
    Danilovskaya, V.Y.: Temperature stresses in an elastic semi-space due to a sudden heating of its boundary (in Russian). Prikl. Mat. Mekh. (1950).Google Scholar
  3. 3.
    Parkus, H.: Instationäre Wärmespannungen, Wien: Springer. 1959.MATHCrossRefGoogle Scholar
  4. 4.
    Sternberg, E., and J.G. Chakravorty: On inertia effects in a transient thermoelastic problem. J. Appl. Mech. 26 (1959).Google Scholar
  5. 5.
    Boley, B.A.: Thermally induced vibrations of beams. J. Aeronaut. Sci. 23, 179–181 (1956).MathSciNetMATHGoogle Scholar
  6. 6.
    Boley, B.A.: Approximate analyses of thermally induced vibrations of beams and plates. J. Appl. Mech. 39, 212–216 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    Lyons, W.C.: Comments on heat induced vibrations of elastic beams, plates, and shells. AIAA J. 4, 1502–1503 (1969).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Parkus, H.: Stress in a centrally heated disc. Proc. 2nd U.S. Nat. Congr. Appl. Mech. p. 307. 1954.Google Scholar
  9. 9.
    Bargmann, H.: Recent developments in the field of thermally induced waves and vibrations. 2nd Int. Conf. Struct. Mech. Reactor Tech. Sept. 10-14, Berlin (1973). Nuclear Engng. Design (in press).Google Scholar
  10. 10.
    Bargmann, H.: Stress waves in elastic rods induced by radiation heating. Nuclear Engng. Design (in press).Google Scholar
  11. 11.
    Avery, R.T., D. Keefe, T.L. Brekke, and I. Finnie: Shattering rock with intense bursts of energetic electrons. In Proc. Particle Accelerator Conf. March 5-7, San Francisco, 1973.Google Scholar
  12. 12.
    Hauck, J.E., (ed.): Materials selector 73. vol. 76, 4. Stamford, Conn.: Reinhold Publ. Co. Inc. 1972.Google Scholar

Copyright information

© Springer-Verlag Wien 1974

Authors and Affiliations

  • H. Bargmann
    • 1
    • 2
  1. 1.GenevaSwitzerland
  2. 2.ViennaAustria

Personalised recommendations