Skip to main content

Creep in Continua and Structures

  • Conference paper
Topics in Applied Continuum Mechanics

Abstract

Creep mechanics is a young branch of solid mechanics. Even though its foundations were established by experimental and theoretical studies early in this century, creep phenomena came to gain engineering importance only in the last few decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Norton, F.H.: Creep of Steel at High Temperatures. New York: McGraw-Hill. 1929.

    Google Scholar 

  2. Tapsell, H.J.: Creep of Metals. Oxford University Press. 1931.

    Google Scholar 

  3. Sully, A.H.: Metallic Creep and Creep Resistant Alloys. London: Butterworths. 1949.

    Google Scholar 

  4. Malinin, N.N.: Fundamentals of Creep Calculations (in Russian). Moscow: Mazhgiz. 1948.

    Google Scholar 

  5. Finnie, I. and W.R. Heller: Creep of Engineering Materials. New York: McGraw-Hill. 1959.

    Google Scholar 

  6. Kachanov, L.M.: Theory of Creep. Moscow: Gos.Izdat.Fis.-Mat.Lit. 1960.

    Google Scholar 

  7. Odqvist, F.K.G. and J. Hult: Kriechfestigkeit metallischer Werkstoffe. Berlin: Springer. 1962.

    Book  Google Scholar 

  8. Odqvist, F.K.G.: Mathematical Theory of Creep and Creep Rupture. Oxford University Press, 1966.

    Google Scholar 

  9. Hult, J.: Creep in Engineering Structures. Waltham, Mass: Blaisdell. 1966.

    Google Scholar 

  10. Rabotnov, Yu. N.: Creep Problems in Structural Members (in Russian 1966). Amsterdam: North-Holland. 1969.

    Google Scholar 

  11. Penny, R.K. and D.L. Marriott: Design for Creep. London: McGraw-Hill. 1971.

    Google Scholar 

  12. IUTAM Colloquium, Creep in Structures, Stanford 1960. Proc. (ed. N.J. Hoff). Berlin: Springer. 1962.

    Google Scholar 

  13. ASME-ASTM-IME Joint International Conference on Creep, New York-London 1963. Proc. (ed. IME). London: Institution of Mechanical Engineers. 1964.

    Google Scholar 

  14. IME Conference, Thermal Loading and Creep in Structures and Components, London 1964. Proc. (ed. IME). London: Institution of Mechanical Engineers. 1964.

    Google Scholar 

  15. IUTAM Symposium, Creep in Structures, Gothenburg 1970. Proc. (ed. J. Hult). Berlin: Springer. 1972.

    Google Scholar 

  16. IME Conference, Creep and Fatigue in Elevated Temperature Applications, Sheffield 1974. Proc. to be published by IME. London: Institution of Mechanical Engineers.

    Google Scholar 

  17. Advances in Creep Design-the A.E. Johnson Memorial Volume (ed. A.I. Smith And A.M. Nicholson). London: Applied Science Publishers. 1971.

    Google Scholar 

  18. Odqvtst, F.K.G.: Advances in Theories of Creep of Engineering Materials. Appl. Mech. Rev. 7, 517–519 (1954).

    Google Scholar 

  19. Hoff, N.J.: A Survey of the Theories of Creep Buckling. Proc. 3 US Nat. Congr. Appl. Mech. 1958, 22–49. New York: ASME. 1958.

    Google Scholar 

  20. Johnson, A.E.: Complex-Stress Creep of Metals. Mat. Rev. 5, 447–506 (1960).

    Google Scholar 

  21. Finnie, I.: Stress Analysis for Creep and Creep Rupture. Appl. Mech. Rev. 13, 373–387 (1960).

    MathSciNet  Google Scholar 

  22. Ellison, E.G.: A Review of the Interaction of Creep and Fatigue. J.Mech.Eng.Sci. 11, 318–339 (1969).

    Article  Google Scholar 

  23. Boresi, A.P. and O.M. Sidebottom: Creep of Metals under Nultiaxial States of Stress. Nuclear Engng and Design 18, 415–456 (1972).

    Article  Google Scholar 

  24. Kachanov, L.M.: Time of the Rupture Process under Creep Conditions. Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk. Nr. 8, 26–31 (1958).

    Google Scholar 

  25. Rabotnov, Yu.N,: Creep Rupture. Proc. XII Int. Congr. Appl. Mech., Stanford 1968, 342–349 (Ed. M. Hetenyi and W.G. Vincenti). Berlin: Springer. 1969.

    Google Scholar 

  26. Broberg, H.: A new Criterion for Brittle Creep Rupture. To appear in J. Appl. Mech.

    Google Scholar 

  27. Hult, J.: Creep Strength of Structures. Udine: CISM. 1973.

    Google Scholar 

  28. Hult, J. and H. Broberg: Creep Rupture under Cyclic Loading. Bulgarian 2 Nat. Congr. Theor. Appl. Mech., Varna 1973.

    Google Scholar 

  29. Odqvist, F.K.G.: Influence of Primary Creep on Stresses in Structural Parts. VIII Int. Congr. Appl. Mech., Istanbul 1952. Trans. Roy. Inst. Tech. Stockholm, Nr. 66 (1953).

    Google Scholar 

  30. Hult, J.: Structural Creep Behaviour under Alternating Load. Paper to be presented at /16/.

    Google Scholar 

  31. Chrzanowski, M.: Use of the Damage Concept in Describing Creep-Fatigue Interaction under Prescribed Stress. Chalmers University, Gothenburg (internal report), 1974.

    Google Scholar 

  32. Eimer, C.: Rheological Approach to Problems of Cumulative Damage and Strength. Bull. Acad. Pol. Sci., Ser. Sci. Tech. 20, 255–261 (1972).

    Google Scholar 

  33. Martin, J.B. and F.A. Leckie: On the Creep Rupture of Structures. J. Mech. Phys. Solids 20, 223–238 (1972).

    Article  ADS  MATH  Google Scholar 

  34. Hayhurst, D.R. and F.A. Leckie: The Effect of Creep Constitutive and Damage Relationships upon the Rupture Time of a Solid Circular Torsion Bar. J. Mech. Phys. Solids 21, 431–446 (1973).

    Article  ADS  Google Scholar 

  35. Chrzanowski, M.: On the Possibility of Describing the Complete Process of Metallic Creep. Bull. Acad. Pol. Sci., Ser. Sci. Tech. 20, 75–81 (1972).

    Google Scholar 

  36. Chrzanowski, M.: The Description of Metallic Creep in the Light of Damage Hypothesis and Strain Hardening. Diss, hab., Politechnika Krakowska, Krakow (1973).

    Google Scholar 

  37. Parkus, H. and J.L. Zeman: Some Stochastic Problems of Thermoviscoelasticity. Proc. IUTAM Symposium, Thermoinelasticity, East Kilbride 1968 (ed. B.A. Boley), 226–240. Wien: Springer. 1970.

    Google Scholar 

  38. Björkenstam, U.: Random Loading on Structures under Creep. Diss. Chalmers University, Gothenburg 1973.

    Google Scholar 

  39. Hoff, N.J.: Approximate Analysis of Structures in the Presence of Moderately Large Creep Deformations. Quart. Appl. Math. 12, 49–55 (1954).

    MathSciNet  MATH  Google Scholar 

  40. Calladine, C.R.: Time-Scales for Redistribution of Stress in creep of Structures. Proc. Roy. Soc. A. 309, 363–375 (1969).

    Article  ADS  Google Scholar 

  41. Hult, J.: On the Stationarity of Stress and Strain Distributions in Creep. Proc. IUTAM Symposium, Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics (ed. M. Reiner and D. Abir), 352–361. New York: Macmillan. 1964.

    Google Scholar 

  42. Marriott, D.L. and F.A. Leckie: Some Observations on the Deflections of Structures during Creep. Ref. /14/, 115-125.

    Google Scholar 

  43. Soderberg, C.R.: Interpretation of Creep Tests on Tubes. Trans. ASME 63, 737–740 (1941).

    Google Scholar 

  44. Anderson, R.G., L.R.T. Gardner and W.R. Hodgkins: Deformation of Uniformly Loaded Beams obeying Complex Creep Laws. J. Mech. Eng. Sci. 5, 238–244 (1963).

    Article  Google Scholar 

  45. Mackenzie, A.C.: On the Use of a Single Uniaxial Test to Estimate Deformation Rates in some Structures Undergoing Creep. Int. J. Mech. Sci. 10, 441–453 (1968).

    Article  Google Scholar 

  46. Sim, R.G.: Reference Stress Concepts in the Analysis of Structures during Creep. Int. J. Mech. Sci. 12, 561–573 (1970).

    Article  Google Scholar 

  47. Johnsson, A.: The Reference Stress Method in Creep Design. Diss. Chalmers University, Gothenburg 1973.

    Google Scholar 

  48. Spence, J. and J. Hult: Simple Approximations for Creep Relaxation. Int. J. Mech. Sci. 15, 741–755 (1973).

    Article  MATH  Google Scholar 

  49. Hodge, P.G. Jr. and B. Venkatraman: Approximate Solutions on Some Problems in Steady Creep. Proc. Symposium su 1a Plasticita nella Scienza delle Costruzioni, Varenna 1956.

    Google Scholar 

  50. Martin, J.B.: A Note on the Determination of an Upper Bound on Displacement Rates for Steady Creep Problems. J. Appl. Mech. 33, 216–217 (1966).

    Article  ADS  Google Scholar 

  51. Palmer, A.C.: A Lower Bound on Displacement Rates in Steady Creep. J. Appl. Mech. 34, 216–217 (1967).

    Article  ADS  Google Scholar 

  52. Ponter, A.R.S.: On the Stress Analysis of Creeping Structures Subject to Variable Loading. To be published in J. Appl. Mech.

    Google Scholar 

  53. Carlson, R.L.: Creep-Induced Tensile Instability. J.Mech. Eng. Sci. 7, 228–229 (1965).

    Article  Google Scholar 

  54. Storåkers, B.: Bifurcation and Instability Modes in Thick-Walled Viscoplastic Pressure Vessels. Proc. IUTAM Symposium, Creep in Structures, Gothenburg 1970 (ed, J. Hult), 333–344. Berlin: Springer. 1972.

    Chapter  Google Scholar 

  55. Hoff, N.J.: Necking and Rupture of Rods under Tensile Loads. J. Appl. Mech. 20, 105–108 (1953).

    Google Scholar 

  56. Marriott, D.L. and R.K. Penny: Strain Accumulation and Rupture during Creep under Variable Uniaxial Tensile Loading. J. Strain Analysis 8, 151–159 (1973).

    Article  Google Scholar 

  57. Odqvist, F.K.G. and J. Hult: Some Aspects of Creep Rupture. Arkiv för Fysik 19:26, 379–382 (1961).

    MathSciNet  MATH  Google Scholar 

  58. Boström, P.O., H. Broberg, L. Måthe and M. Chrzanowski: On Failure Conditions in Visco-Elastic Media and Structures. To be presented at IUTAM Symposium, Viscoelastic Media and Bodies, Gothenburg 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. L. Zeman F. Ziegler

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Wien

About this paper

Cite this paper

Hult, J. (1974). Creep in Continua and Structures. In: Zeman, J.L., Ziegler, F. (eds) Topics in Applied Continuum Mechanics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4188-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4188-5_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81260-0

  • Online ISBN: 978-3-7091-4188-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics