Creep in Continua and Structures


Creep mechanics is a young branch of solid mechanics. Even though its foundations were established by experimental and theoretical studies early in this century, creep phenomena came to gain engineering importance only in the last few decades.


Creep Rupture Reference Stress IUTAM Symposium Steady Creep Creep Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Norton, F.H.: Creep of Steel at High Temperatures. New York: McGraw-Hill. 1929.Google Scholar
  2. 2.
    Tapsell, H.J.: Creep of Metals. Oxford University Press. 1931.Google Scholar
  3. 3.
    Sully, A.H.: Metallic Creep and Creep Resistant Alloys. London: Butterworths. 1949.Google Scholar
  4. 4.
    Malinin, N.N.: Fundamentals of Creep Calculations (in Russian). Moscow: Mazhgiz. 1948.Google Scholar
  5. 5.
    Finnie, I. and W.R. Heller: Creep of Engineering Materials. New York: McGraw-Hill. 1959.Google Scholar
  6. 6.
    Kachanov, L.M.: Theory of Creep. Moscow: Gos.Izdat.Fis.-Mat.Lit. 1960.Google Scholar
  7. 7.
    Odqvist, F.K.G. and J. Hult: Kriechfestigkeit metallischer Werkstoffe. Berlin: Springer. 1962.CrossRefGoogle Scholar
  8. 8.
    Odqvist, F.K.G.: Mathematical Theory of Creep and Creep Rupture. Oxford University Press, 1966.Google Scholar
  9. 9.
    Hult, J.: Creep in Engineering Structures. Waltham, Mass: Blaisdell. 1966.Google Scholar
  10. 10.
    Rabotnov, Yu. N.: Creep Problems in Structural Members (in Russian 1966). Amsterdam: North-Holland. 1969.Google Scholar
  11. 11.
    Penny, R.K. and D.L. Marriott: Design for Creep. London: McGraw-Hill. 1971.Google Scholar
  12. 12.
    IUTAM Colloquium, Creep in Structures, Stanford 1960. Proc. (ed. N.J. Hoff). Berlin: Springer. 1962.Google Scholar
  13. 13.
    ASME-ASTM-IME Joint International Conference on Creep, New York-London 1963. Proc. (ed. IME). London: Institution of Mechanical Engineers. 1964.Google Scholar
  14. 14.
    IME Conference, Thermal Loading and Creep in Structures and Components, London 1964. Proc. (ed. IME). London: Institution of Mechanical Engineers. 1964.Google Scholar
  15. 15.
    IUTAM Symposium, Creep in Structures, Gothenburg 1970. Proc. (ed. J. Hult). Berlin: Springer. 1972.Google Scholar
  16. 16.
    IME Conference, Creep and Fatigue in Elevated Temperature Applications, Sheffield 1974. Proc. to be published by IME. London: Institution of Mechanical Engineers.Google Scholar
  17. 17.
    Advances in Creep Design-the A.E. Johnson Memorial Volume (ed. A.I. Smith And A.M. Nicholson). London: Applied Science Publishers. 1971.Google Scholar
  18. 18.
    Odqvtst, F.K.G.: Advances in Theories of Creep of Engineering Materials. Appl. Mech. Rev. 7, 517–519 (1954).Google Scholar
  19. 19.
    Hoff, N.J.: A Survey of the Theories of Creep Buckling. Proc. 3 US Nat. Congr. Appl. Mech. 1958, 22–49. New York: ASME. 1958.Google Scholar
  20. 20.
    Johnson, A.E.: Complex-Stress Creep of Metals. Mat. Rev. 5, 447–506 (1960).Google Scholar
  21. 21.
    Finnie, I.: Stress Analysis for Creep and Creep Rupture. Appl. Mech. Rev. 13, 373–387 (1960).MathSciNetGoogle Scholar
  22. 22.
    Ellison, E.G.: A Review of the Interaction of Creep and Fatigue. J.Mech.Eng.Sci. 11, 318–339 (1969).CrossRefGoogle Scholar
  23. 23.
    Boresi, A.P. and O.M. Sidebottom: Creep of Metals under Nultiaxial States of Stress. Nuclear Engng and Design 18, 415–456 (1972).CrossRefGoogle Scholar
  24. 24.
    Kachanov, L.M.: Time of the Rupture Process under Creep Conditions. Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk. Nr. 8, 26–31 (1958).Google Scholar
  25. 25.
    Rabotnov, Yu.N,: Creep Rupture. Proc. XII Int. Congr. Appl. Mech., Stanford 1968, 342–349 (Ed. M. Hetenyi and W.G. Vincenti). Berlin: Springer. 1969.Google Scholar
  26. 26.
    Broberg, H.: A new Criterion for Brittle Creep Rupture. To appear in J. Appl. Mech.Google Scholar
  27. 27.
    Hult, J.: Creep Strength of Structures. Udine: CISM. 1973.Google Scholar
  28. 28.
    Hult, J. and H. Broberg: Creep Rupture under Cyclic Loading. Bulgarian 2 Nat. Congr. Theor. Appl. Mech., Varna 1973.Google Scholar
  29. 29.
    Odqvist, F.K.G.: Influence of Primary Creep on Stresses in Structural Parts. VIII Int. Congr. Appl. Mech., Istanbul 1952. Trans. Roy. Inst. Tech. Stockholm, Nr. 66 (1953).Google Scholar
  30. 30.
    Hult, J.: Structural Creep Behaviour under Alternating Load. Paper to be presented at /16/.Google Scholar
  31. 31.
    Chrzanowski, M.: Use of the Damage Concept in Describing Creep-Fatigue Interaction under Prescribed Stress. Chalmers University, Gothenburg (internal report), 1974.Google Scholar
  32. 32.
    Eimer, C.: Rheological Approach to Problems of Cumulative Damage and Strength. Bull. Acad. Pol. Sci., Ser. Sci. Tech. 20, 255–261 (1972).Google Scholar
  33. 33.
    Martin, J.B. and F.A. Leckie: On the Creep Rupture of Structures. J. Mech. Phys. Solids 20, 223–238 (1972).ADSMATHCrossRefGoogle Scholar
  34. 34.
    Hayhurst, D.R. and F.A. Leckie: The Effect of Creep Constitutive and Damage Relationships upon the Rupture Time of a Solid Circular Torsion Bar. J. Mech. Phys. Solids 21, 431–446 (1973).ADSCrossRefGoogle Scholar
  35. 35.
    Chrzanowski, M.: On the Possibility of Describing the Complete Process of Metallic Creep. Bull. Acad. Pol. Sci., Ser. Sci. Tech. 20, 75–81 (1972).Google Scholar
  36. 36.
    Chrzanowski, M.: The Description of Metallic Creep in the Light of Damage Hypothesis and Strain Hardening. Diss, hab., Politechnika Krakowska, Krakow (1973).Google Scholar
  37. 37.
    Parkus, H. and J.L. Zeman: Some Stochastic Problems of Thermoviscoelasticity. Proc. IUTAM Symposium, Thermoinelasticity, East Kilbride 1968 (ed. B.A. Boley), 226–240. Wien: Springer. 1970.Google Scholar
  38. 38.
    Björkenstam, U.: Random Loading on Structures under Creep. Diss. Chalmers University, Gothenburg 1973.Google Scholar
  39. 39.
    Hoff, N.J.: Approximate Analysis of Structures in the Presence of Moderately Large Creep Deformations. Quart. Appl. Math. 12, 49–55 (1954).MathSciNetMATHGoogle Scholar
  40. 40.
    Calladine, C.R.: Time-Scales for Redistribution of Stress in creep of Structures. Proc. Roy. Soc. A. 309, 363–375 (1969).ADSCrossRefGoogle Scholar
  41. 41.
    Hult, J.: On the Stationarity of Stress and Strain Distributions in Creep. Proc. IUTAM Symposium, Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics (ed. M. Reiner and D. Abir), 352–361. New York: Macmillan. 1964.Google Scholar
  42. 42.
    Marriott, D.L. and F.A. Leckie: Some Observations on the Deflections of Structures during Creep. Ref. /14/, 115-125.Google Scholar
  43. 43.
    Soderberg, C.R.: Interpretation of Creep Tests on Tubes. Trans. ASME 63, 737–740 (1941).Google Scholar
  44. 44.
    Anderson, R.G., L.R.T. Gardner and W.R. Hodgkins: Deformation of Uniformly Loaded Beams obeying Complex Creep Laws. J. Mech. Eng. Sci. 5, 238–244 (1963).CrossRefGoogle Scholar
  45. 45.
    Mackenzie, A.C.: On the Use of a Single Uniaxial Test to Estimate Deformation Rates in some Structures Undergoing Creep. Int. J. Mech. Sci. 10, 441–453 (1968).CrossRefGoogle Scholar
  46. 46.
    Sim, R.G.: Reference Stress Concepts in the Analysis of Structures during Creep. Int. J. Mech. Sci. 12, 561–573 (1970).CrossRefGoogle Scholar
  47. 47.
    Johnsson, A.: The Reference Stress Method in Creep Design. Diss. Chalmers University, Gothenburg 1973.Google Scholar
  48. 48.
    Spence, J. and J. Hult: Simple Approximations for Creep Relaxation. Int. J. Mech. Sci. 15, 741–755 (1973).MATHCrossRefGoogle Scholar
  49. 49.
    Hodge, P.G. Jr. and B. Venkatraman: Approximate Solutions on Some Problems in Steady Creep. Proc. Symposium su 1a Plasticita nella Scienza delle Costruzioni, Varenna 1956.Google Scholar
  50. 50.
    Martin, J.B.: A Note on the Determination of an Upper Bound on Displacement Rates for Steady Creep Problems. J. Appl. Mech. 33, 216–217 (1966).ADSCrossRefGoogle Scholar
  51. 51.
    Palmer, A.C.: A Lower Bound on Displacement Rates in Steady Creep. J. Appl. Mech. 34, 216–217 (1967).ADSCrossRefGoogle Scholar
  52. 52.
    Ponter, A.R.S.: On the Stress Analysis of Creeping Structures Subject to Variable Loading. To be published in J. Appl. Mech.Google Scholar
  53. 53.
    Carlson, R.L.: Creep-Induced Tensile Instability. J.Mech. Eng. Sci. 7, 228–229 (1965).CrossRefGoogle Scholar
  54. 54.
    Storåkers, B.: Bifurcation and Instability Modes in Thick-Walled Viscoplastic Pressure Vessels. Proc. IUTAM Symposium, Creep in Structures, Gothenburg 1970 (ed, J. Hult), 333–344. Berlin: Springer. 1972.CrossRefGoogle Scholar
  55. 55.
    Hoff, N.J.: Necking and Rupture of Rods under Tensile Loads. J. Appl. Mech. 20, 105–108 (1953).Google Scholar
  56. 56.
    Marriott, D.L. and R.K. Penny: Strain Accumulation and Rupture during Creep under Variable Uniaxial Tensile Loading. J. Strain Analysis 8, 151–159 (1973).CrossRefGoogle Scholar
  57. 57.
    Odqvist, F.K.G. and J. Hult: Some Aspects of Creep Rupture. Arkiv för Fysik 19:26, 379–382 (1961).MathSciNetMATHGoogle Scholar
  58. 58.
    Boström, P.O., H. Broberg, L. Måthe and M. Chrzanowski: On Failure Conditions in Visco-Elastic Media and Structures. To be presented at IUTAM Symposium, Viscoelastic Media and Bodies, Gothenburg 1974.Google Scholar

Copyright information

© Springer-Verlag Wien 1974

Authors and Affiliations

  • J. Hult
    • 1
  1. 1.GothenburgSweden

Personalised recommendations