On the Physics and Mathematics of Self-Stresses

  • E. Kröner


By self- or residual stresses we shall understand those stresses which in a solid material remain after any kind of non-elastic treatment such as plastic deformation, heating and cooling, recrystallization, phase transformation etc. These stresses can exist without the action of external forces.


Lattice Defect Tensor Field Unit Tensor Elementary Source Constant Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reissner, H.: Eigenspannungen und Eigenspannungsquellen. Z. Angew. Math. Mech. 11, 1–8 (1931).CrossRefGoogle Scholar
  2. 2.
    Rieder, G.: Spannungen und Dehnungen im gestörten elastischen Medium. Z. Naturforsch. 11a, 171–173 (1956).ADSGoogle Scholar
  3. 3.
    Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Erg. Angew. Math. 5, 1–179 (1958).Google Scholar
  4. 4.
    Somigliana, C.: Sulle equazioni della elasticita. Ann. Mat. (2) 17, 37–64 (1889).MATHCrossRefGoogle Scholar
  5. 5.
    Fredholm, I.: Sur les equations de l’équilibre d’un corps solide élastique. Acta math. 23, 1–42 (1900).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zeller, R. and P.H. Dederichs: Elastic constants of polycrystals, phys. stat. sol. (b) 55, 831–842 (1973).ADSCrossRefGoogle Scholar
  7. 7.
    Dederichs, P.H. and R. Zeller: Variational treatment of the elastic constants of disordered materials. Z. Physik 259, 103–116 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    Nowacki, W.: Thermoelasticity, Oxford, Pergamon Press 1962.Google Scholar
  9. 9.
    Levin, V.M.: The relation between mathematical expectations of stress and strain tensors in elastic microheterogeneous media. Prikl. Mat. Mech. 35, 694–701 (1971), transl, from Russ.MATHGoogle Scholar
  10. 10.
    Mazilu, P.: On the theory of linear elasticity in statistically homogeneous media. Rev. Roum. Mat. Pur. Appl. 17, 261–273 (1972).MATHGoogle Scholar
  11. 11.
    Kröner, E.: Zur klassischen Theorie statistisch aufgebauter Festkörper. Int. J. Engng. Sci. 11, 171–191 (1973).MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1974

Authors and Affiliations

  • E. Kröner
    • 1
  1. 1.StuttgartGermany

Personalised recommendations