Skip to main content

Rock Stresses in Canada Their Relevance to Engineering Projects

  • Conference paper

Part of the book series: Rock Mechanics ((ROCK,volume 6))

Summary

Rock Stresses in Canada — Their Relevance to Engineering Projects. This paper reviews the stress measurements that have been made in Canada, and discusses additional evidence for the existence of high horizontal stresses; for example, post-pleistocene folds and faults, and damage to man-made works.

Horizontal stresses in the range 5–15 MPa have been measured at depths as shallow as 0–100 metres; much higher stresses than one would expect from gravitational loading. The two horizontal principal stress components are often similar in magnitude, with the major principal stress in a northeast to easterly direction.

Case studies are presented to illustrate the detrimental effects of these high stresses on canals and bridges; open excavations; rock tunnels; and mining excavations. Precautions are recommended with regard to both construction practices and design.

There is often a need for substantial delay between rock excavation and lining placement to allow for the relief of stresses. Also the distance between the location of rock excavation and the nearest rigid support should be maximized. Linings and supports should either be flexible or should be protected by a deformable interface layer, to accommodate up to 10 cm of inwards movement of the excavation walls. Movements may occur over substantial periods of time, so that the design methods used should consider rock creep. Monitoring of displacements and rock pressures is also needed in many cases.

Zusammenfassung

Primäre Gebirgsspannungen in Kanada und ihre Bedeutung für den Ingenieurbau. Die Arbeit gibt einen Überblick über Spannungsmessungen, die in Kanada durchgeführt worden sind, sowie zusätzliche Hinweise für das Bestehen von hohen Horizontalspannungen (z. B. nach-pleistozäne Falten und Störungen sowie Schäden an Bauwerken).

Horizontalspannungen in der Größenordnung von 5 bis 15 MPa sind schon in Tiefen von weniger als 100 m anzutreffen. Das sind höhere Werte als die, welche vom Überlagerungsdruck abzuleiten sind. Die beiden Horizontalkomponenten sind oft von ähnlicher Größe und die Maximalspannung ist meist nordost bis ost gerichtet.

Beispiele für die Nachteile hoher Gebirgsspannungen auf Kanäle, Brücken, Baugruben, Felstunnel und Bergwerke werden mitgeteilt. Für Planung und Bauausführung werden Vorsichtsmaßnahmen abgeleitet.

Um Spannungsumlagerungen zu ermöglichen, sollte zwischen dem Ausbruch des Profils und dem Einbringen des steifen Ausbaues ein möglichst großer Zeitraum verstreichen. Der Ausbau sollte entweder flexibel sein oder eine verformbare Zwischenlage besitzen, die bis zu 10 cm Verformung aufnehmen kann. Bewegungen können über lange Zeiträume anhalten, weshalb die Konstruktion die Möglichkeit von Gesteinskriechen berücksichtigen sollte. Die Messung von Verformungen und Gesteinsspannungen ist in vielen Fällen notwendig.

Résumé

Les contraintes rocheuses au Canada et leur importance par rapport aux projets du génie. Cette communication passe en revue les mesures de contraintes effectuées au Canada et discute les preuves additionnelles de l’existence de contraintes horizontales importantes, comme — par exemple — les plissements et les failles formés après le Pléistocène ainsi que les dégats encouvus par les ouvrages érigés par les hommes.

Des contraintes horizontales de l’ordre de 5 à 15 MPa furent enregistrées pour des profondeurs ne dépassant pas 100 mètres, valeurs beaucoup plus élevées que celles qui sont théoriquement génévées par l’action de la gravité. Les deux composantes horizontales des contraintes principales sont souvent du même ordre de grandeur, la plus grande étant dans la direction NE/E.

Des exemples sont donnés afin d’illustrer les effets néfastes que peuvent avoir ces contraintes importantes dans le cas de canaux et de ponts; dans le cas d’excavations à ciel ouvert; dans le cas de tunnels rocheux; ainsi que dans le cas de mines souterraines. Diverses précautions sont recommandées aussi bien pour la phase de construction que lors du dimensionnement.

Il est souvent nécessaire de prévoir un délai important entre l’excavation rocheuse proprement dite et le placement due parement afin de permettre la relaxation des contraintes. De plus, la distance minimum entre la face rocheuse et le premier support rigide se doit d’être maximisé. Les parements et les supports derraient être, soit flexibles, soit protégés au moyen d’une couche intermédiaine dé-formable, afin de permettre des déplacements rocheux de l’ordre de 10 cm vers l’interieur de l’excavation. Ces mouvements peuvent se produire pendant une période non négligeable à tel point que les méthodes de dimensionnement derraient tenir compte d’un certain fluage de la roche. La détermination de l’évolution des déplacements et des contraintes rocheuses est nécessaire dans de nombreux cas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acres Consulting Services Ltd.: The general and economic features of the Queenston-Chippewa Development. J. Eng. Inst. Canada, Vol. 3, No. 9, pp. 446–452 (1920).

    Google Scholar 

  • Acres Consulting Services Ltd.: Thorold tunnel — Investigations to determine the cause of cracking in the structure. Rept. to Dept. of Transpt. & Communications, Ontario (1972).

    Google Scholar 

  • Adams, E. D.: Niagara Power. History of the Niagara Falls Power Company 1886–1918. Vol. II, Niagara Falls Power Co., Niagara Falls, N. Y., p. 504. 1927.

    Google Scholar 

  • American Falls International Board: Preservation and enhancement of the American Falls at Niagara: Appendix C — geology and rock mechanics. Final Rept. to the International Joint Commission (1974).

    Google Scholar 

  • Benson, R. P., T. W. Kierans, and O. T. Sigvaldason: In situ and induced stresses at the Churchill Falls Unterground Power House. Proc. 2nd Cong., Int. Soc. Rock Mech., Belgrade, p. 821, 1970.

    Google Scholar 

  • Bielenstein, H. U., and K. Barron: In situ stresses. Proc. 7th Canadian Rock Mech. Symp., Edmonton, Alberta, 1972.

    Google Scholar 

  • Bielenstein, H. U., and G. H. Eisbacher: Tectonic interpretation of elastic strain recovery measurements at Elliot Lake, Ontario. Canadian Dept. Energy, Mines & Resources, Mines Branch Rept. R210 (1969).

    Google Scholar 

  • Bielenstein, H. U., and G. H. Eisbacher: In situ stress determinations and tectonic fabric at Elliot Lake, Ontario. Proc. 6th Can. Symp. Rock Mech., Montreal, pp. 91–101, 1970.

    Google Scholar 

  • Coates, D. F.: Some cases of residual stress effects in engineering works. In: State of Stress in the Earth’s Crust. pp. 679–688, New York: American Elsevier, 1964.

    Google Scholar 

  • Coates, D. F., H. U. Bielenstein, and D. G. F. Hedley: A rock mechanics case history of Elliot Lake. Canadian J. Earth Sci., Vol. 10, No. 7, pp. 1023–1058 (1973).

    Google Scholar 

  • Coates, D. F., and A. Ignatieff: Prediction and measurement of pillar stresses. Canadian Mining Jour., Vol. 87, No. 1, pp. 50–56 (1966).

    Google Scholar 

  • Coates, D. F., and F. Grant: Stress measurements at Elliot Lake. Canadian Inst. Min. Metal. Bul., Vol. 59, pp. 603–613 (1966).

    Google Scholar 

  • Cushing, H. P. et al.: Geology of the Thousand Islands Region, New York State. Museum & Sci. Service Bull., Vol. 145, p. 185 (1910).

    Google Scholar 

  • Czurda, K., and R. M. Quigley: Cracking of a concrete tunnel in the Meaford-Dundas Formation. Univ. Western Ontario, Faculty of Eng. Sci., Res. Rept. SM-3–73, (1973).

    Google Scholar 

  • Dickout, H. H.: Ground control at the Creighton Mine of the International Nickel Company of Canada Ltd. Proc. Symp. Rock Mech., Montreal, pp. 121–144, 1962.

    Google Scholar 

  • Eisbacher, G. H., and H. U. Bielenstein: Interpretation of elastic strain recovery measurements near Elliot Lake, Ontario. Canadian J. Earth Sci., Vol. 7, pp. 576–578 (1970).

    Google Scholar 

  • Engelder, T., and M. L. Sbar: Determination of the regional stress patterns in New York State and adjacent areas by in situ strain relief measurements. Annual Tech. Rept. for New York State Energy Res. & Development Authority, by Lamont-Doherty Geol. Observatory, Columbia University, 1976.

    Google Scholar 

  • Feld, J.: Rock movements from load release in excavated cuts. Proc. 1st Cong., Int. Soc. Rock Mech., Lisbon, Portugal, Vol. 2, pp. 139–140 (1966).

    Google Scholar 

  • Franklin, J. A;,: Safety and economy in tunneling. Proc. 10th Canadian Rock Mech. Symp. Kingston, Ont., Vol. 1, pp. 27–54 (1975).

    Google Scholar 

  • Franklin Trow Associates Ltd.: Research Project Interim Report, Easterly Filtration Plant Intake Tunnel, Scarborough, Ont. National Research Council of Canada, 1975.

    Google Scholar 

  • Franklin Trow Associates Ltd:. Final Report: Ground movement monitoring; tunnel under highway 403. (For Regional Municipality of Hamilton-Wentworth), 1976.

    Google Scholar 

  • Gilbert, G. K.: Recent geological anticlinals. Am. Jour. Sci., ser. 3, Vol. 32, p. 324 (1886)

    Google Scholar 

  • Gilbert, G. K.: Post-glacial anticlinal ridges near Ripley, N. Y., and near Caledonia, N. Y. Am. Assoc. Adv. Sci. Proc., Vol. 40, pp. 249–250 (1888).

    Google Scholar 

  • Golder Associates Ltd.: Foundation investigation for proposed plant re-location, Dufferin Materials & Construction Ltd., Milton, Ontario. (For Holderbank Technical Services Ltd. ), 1972.

    Google Scholar 

  • Gray, W. M., and K. Barron: Stress determination from strain relief measurements on the ends of boreholes; planning, data evaluation and error assessment. Proc. Int. Symp. Determination of Stresses, Lisbon, Portugal, and Can. Dept. Energy, Mines & Resources Reprint RS110, 1969.

    Google Scholar 

  • Gray, W. M., and N. A. Toe w s: Analysis of accuracy in the determination of the ground stress tensor by means of borehole devices. Proc. 9th Symp. Rock Mech., Colorado, 1967, pp. 45–78, Publ. by Soc. Min. Eng. AIME, 1968.

    Google Scholar 

  • Gung, G.: Rock cliff stability studies. Ont. Power Generating Station, Rept. 69–395–11, 1969.

    Google Scholar 

  • Hanafy, E. A., J. J. Emery, and J. A. Franklin: Tunnel lining strategies. Proc. 3rd Symp. Eng. Applications of Solid Mechanics, Univ. Toronto, Canada, June 1976.

    Google Scholar 

  • Hast, N.: The state of stress in the upper part of the earth’s crust. Tectonophysics, Vol. 8, pp. 189–211 (1969).

    Article  Google Scholar 

  • Hedley, D. G. F., and J. C. Wilson: Rock Mechanics applications in Canadian mines. Canadian Inst. Mining Ann. gen. Mtg., Toronto 1975.

    Google Scholar 

  • Hedley, D. G. F., G. Zahary, H. W. Soderlund, and D. F. Coates: Underground measurements in a steeply dipping orebody. Proc. 5th Canadian Rock Mech. Symp., Toronto, pp. 105–125, 1968.

    Google Scholar 

  • Herget, G.: Tectonic fabric and current stress field at an iron mine in the Lake Superior Region. Proc. 24th Int. Geol. Cong., Montreal, Section 13, p. 241, 1972.

    Google Scholar 

  • Herget, G.: First experiences with the CSIR triaxial strain cell for stress determinations. Int. J. Rock Mech. Min. Sci., Vol. 10, pp. 509–522 (1973 A).

    Google Scholar 

  • Herget, G.: Variations of rock stresses with depth at a Canadian Iron Mine. Int. J. Rock Mech. Min. Sci., Vol. 10, pp. 37–51 (1973 B).

    Google Scholar 

  • Herget, G.: Ground stress determinations in Canada. Rock Mechs., Vol. 6, pp. 53–64 (1974).

    Article  Google Scholar 

  • Herget, G., A. Pahl, and P. Oliver: Ground stresses below 3000 feet. Proc. 10th Canadian Rock Mech. Symp., Kingston, Ontario, pp. 281–307, 1975.

    Google Scholar 

  • Hogg, A. D.: Some engineering studies of rock movement in the Niagara area. Eng. Geol. Case Histories No. 3, pp. 1–12, Geol. Soc. America (1959).

    Google Scholar 

  • Jones, T. B.: How one driller solved the Thorold Tunnel rock squeeze problem. Eng. & Contract Record, Vol. 86, No. 9, pp. 24–26 (1973).

    Google Scholar 

  • King, P. B.: Tectonic map of North America. U. S. Geol. Survey, scale 1: 5,000, 000, 1969.

    Google Scholar 

  • Lee, C. F., and K. Y. Lo: Rock squeeze study of two deep excavations. ASCE speciality conf. on Rock Engg., Boulder, Colorado, 1976.

    Google Scholar 

  • Lo, K. Y.: In situ stress measurements in rock — Ontario Power Generating Station. Acres Consulting Services Rept. to Ontario Hydro, 1975.

    Google Scholar 

  • Lo, K. Y., C. F. Lee, J. H. L. Palmer, and R. M. Quigley: Report on stress relief and time-dependent deformation of rocks. Canadian Nat. Res. Council Special Project No. 7307, Univ. Western Ontario, 1975.

    Google Scholar 

  • Lo, K. Y., and J. D. Morton: Tunnels in bedded rock with high horizontal stresses. Proc. 28th Canadian Geot. Conf., Montreal, 1975.

    Google Scholar 

  • McLennan, J. D., and J. C. Roegiers: A synthesis of stress measurements in Ontario. Rept. for Franklin Trow Associates (1975, unpublished).

    Google Scholar 

  • Rock Stresses in Canada 45

    Google Scholar 

  • McLennan, J. D., and J. C. Roegiers: Stress conditions around the Niagara Gorge. Proc. 3rd Symp. Eng. Applications of Solid Mechanics, Univ. Toronto, June 1976.

    Google Scholar 

  • Morrison, R. G. K.: Report on the rock burst situation in Canadian Mines. Trans. Canadian Inst. Min. Met., Vol. XLV, pp. 225–272 (1942).

    Google Scholar 

  • Morrison, W. G.: Rock squeeze investigation, Toronto Power Generating Station. Ontario Hydro. Res. Div. Rept. No. 57–113 (1957).

    Google Scholar 

  • Morton, J. D., K. Y. Lo, and D. J. Belshaw: Rock performance considerations for shallow tunnels in bedded shales with high lateral stresses. Proc. 10th Canadian Rock Mech. Symp., Kingston, Ontario, 1975.

    Google Scholar 

  • Murphy, D. K., J. Levay, and M. Rancourt: The LD2 underground power house. Proc. rapid excavation & tunneling conf., Las Vegas, Nevada, 1976.

    Google Scholar 

  • Oliver, J., T. Johnson, and J. Dorman: Post-glacial faulting and seismicity in New York and Quebec. Canadian Jour. Earth Sci., Vol. 7, pp. 579–590 (1970).

    Google Scholar 

  • Oliver, P. H.: Ground control in transverse cut and fill mining operations. 10th Canadian Rock Mech. Symp., Kingston, Ontario, 1975.

    Google Scholar 

  • Ontario Hydro: Interim report on rock stability in the Niagara Region. 1953, unpublished report.

    Google Scholar 

  • Palmer, J. H. L., and K. Y. Lo: In situ stress measurements in some near surface rock formations — Thorold, Ontario. Can. Geot. Jour., Vol. 13, No. 1 (1975).

    Google Scholar 

  • Parker, J.: Mining in a lateral stress field at White Pine. Canadian Mining & Metallurgical Bul., October, pp. 1189–1197 (1966).

    Google Scholar 

  • Pomeroy, P. W., D. W. Simpson, and M. L. Sbar: Earthquakes triggered by surface quarrying — the Wappingers Falls, New York sequence of June, 1974. Bul. Seism. Soc. Am., 1976, in press.

    Google Scholar 

  • Rose, C. W.: Preliminary report — rock squeeze studies, Niagara River Development. Unpublished report, U. S. Army Corps of Engineers, Buffalo District, 1954.

    Google Scholar 

  • Royea, M. J.: Rock stress measurement at the Sullivan Mine. Proc. 5th Canadian Rock Mech. Symp., Toronto, pp. 59–74, 1968.

    Google Scholar 

  • Sanden, B. H.: In situ deep mine stress field determinations using a borehole deformation overcoring technique. B. Sc. Thesis, Min. Eng. Dept., Queens Univ., Kingston, Ontario (1971).

    Google Scholar 

  • Sbar, M. L., and L. R. Sykes: Contemporary compressive stress and seismicity in eastern North America: an example of intra-plate tectonics. Bul. Geol. Soc. Amer., Vol. 84, V, pp. 1861–1882 (1973).

    Google Scholar 

  • Sellers, J. B.: Strain relief overcoring to measure in situ stresses. Unpublished rept., for U. S. Corps of Engrs., Buffalo District, Niagara Falls Project, by Terra-metrics Inc., 1969.

    Google Scholar 

  • Smith, C. B.: Construction of Canadian Niagara Company’s 100,000 H. P. hydroelectric plant at Niagara Falls, Ontario. Trans Canadian Soc. Civ. Engrs., Vol. 19 (1905).

    Google Scholar 

  • The Trow Group: Report on damage to primary crusher buildings, Milton Quarry. (For Dufferin Aggregates Ltd.), 1976.

    Google Scholar 

  • Van Heerden, W. L., and F. Grant: A comparison of two methods for measuring stress in rock. Int. J. Rock Mech. Min. Sci., Vol. 4, pp. 367–382 (1967).

    Article  Google Scholar 

  • Weir-Jones Engineering Consultants: Stress measurements at the Mica Powerhouse. Unpublished report.

    Google Scholar 

  • White, O. L., P. F. Karrow, and J. R. MacDonald: Residual stress relief phenomena in southern Ontario. Proc. 9th Canadian Symp. on Rock Mech., Montreal, Quebec, 1973.

    Google Scholar 

  • William Trow Associates Ltd.: Geotechnical Investigation, proposed extension to the Hamilton Mountain Trunk Sewer. Stage 4. (For Wyllie & Ufnal Ltd.), 1976.

    Google Scholar 

  • Wilson, A. W. G.: Some recent folds in the Lorraine Shales. Canadian Record of Science, Montreal, Vol. 8, pp. 525–531 (1902).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Wien

About this paper

Cite this paper

Franklin, J.A., Hungr, O. (1978). Rock Stresses in Canada Their Relevance to Engineering Projects. In: Geomechanik gebirgsbildender Vorgänge und deren Auswirkungen auf Felsbauten ober und unter Tage / Geomechanics of Orogenetic Events and Their Effects on the Construction of Rock Structures on Subsurface and Underground. Rock Mechanics, vol 6. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4160-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4160-1_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81435-2

  • Online ISBN: 978-3-7091-4160-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics