Interaction of Influenza Virions with Receptors on Host Cells and on Erythrocytes

  • M. Vijaya Lakshmi
  • Chi-Lui Der
  • Irene T. Schulze
Part of the Topics in Infectious Diseases book series (TIDIS, volume 3)


It is well established that the hemagglutinin spikes on the surface of the influenza virus particles are responsible for the attachment of the virions to erythrocytes as well as to cells which support virus replication. It is also well established that the hemagglutinin receptors on erythrocytes from different species contain sialylated glycoproteins and that removal of the sialic acid residues from these molecules destroys their receptor activity. Although the virion receptors on the cells which are susceptible to infection (host cells) have not been characterized, it is assumed that sialylated molecules constitute the influenza virus receptors on these cells as well as on erythrocytes. However, receptors on host cells can be expected to differ significantly from those on erythrocytes. The major human erythrocyte glycoprotein has an unusually high sialic acid content (some 28% of its dry weight is sialic acid) (Winzler, 1969) and constitutes a larger fraction of the total membrane protein than does any single glycoprotein in other plasma membranes (see Hughes, 1973). In addition, whereas neuraminidase removes virtually all sialic acid residues from the erythrocyte membrane, some of these residues on the membranes of other cells are inaccessible to this enzyme (Eylar et al., 1962; Glick et al., 1970). Thus, a variety of glycoproteins as well as glycolipids could contribute to the hemagglutinin receptor activity of cells which can support influenza virus replication.


Influenza Virus Sialic Acid Hemagglutinating Activity Sialic Acid Residue Virus Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BARTHOLOMEW, B. A. and JOURDIAN, G. W. (1966) in `Methods in Enzymology’ (Neufeld, E. F. and Ginsburg, V., eds.) Vol. 8, pp. 368, Academic Press, New York.Google Scholar
  2. BATEMAN, J. B., DAVIS, M. S. and McCAFFREY, P. A. (1955) Am. J. Hyg. 62, 349–354.PubMedGoogle Scholar
  3. CUATRECASAS, P. (1976) in `Advances in Cyclic Nucleotide Research’ (Drummond, G. I. and Robinson, G. A., eds.) Vol. 5, pp. 79, Raven Press, New York.Google Scholar
  4. DAWSON, I. M. and ELFORD, W. J. (1949) J. Gen. Microbiol. 3, 298–311.PubMedCrossRefGoogle Scholar
  5. EYLAR, E. H., MADOFF, M. A., BRODY, O. V. and ONCLEY, J. L. (1972) J. Biol. Chem. 237, 1992–2000.Google Scholar
  6. GLICK, M. C., COMSTOCK, C. and WARREN, L. (1970) Biochem. Biophys. Acta. 219, 290–300.CrossRefGoogle Scholar
  7. HUGHES, R. C. (1973) Prog. Biophys. Mol. Biol. 26, 189–268.CrossRefGoogle Scholar
  8. HIRST, G. K. and PONS, M. W. (1973) Virology 56, 620–631.PubMedCrossRefGoogle Scholar
  9. KLENK, H-D. and CHOPPIN, P. W. (1970) Proc. Nat. Acad. Sci. USA. 66, 57–64.Google Scholar
  10. KLENK, H-D., CALIGUIRI, L. A. and CHOPPIN, P. W. (1970a) Virology 42, 473–481.PubMedCrossRefGoogle Scholar
  11. KLENK, H-D., COMPANS, R. W. and CHOPPIN, P. W. (1970b) Virology 42, 1158–1162.PubMedCrossRefGoogle Scholar
  12. KLENK, H-D., ROTT, R., ORLICH, M. and BLÖDORN, J. (1975) Virology 68, 426–439.PubMedCrossRefGoogle Scholar
  13. KRIZANOVA, 0. and RATHOVA, V. (1969) Curr. Top-Microbiol. Immunol. 47, 125–151.CrossRefGoogle Scholar
  14. LAKSHMI, M. V., DER, C-L. and SCHULZE, I. T. (1976) Fed. Proc. 35, 1432.Google Scholar
  15. LAKSHMI, M. V. and SCHULZE, I. T. (1977) Manuscript in preparation.Google Scholar
  16. LAVER, W. G. (1971) Virology 45, 275–288.PubMedCrossRefGoogle Scholar
  17. LAZAROWITZ, S. G., COMPANS, R. W. and CHOPPIN, P. W. (1971) Virology 46, 830–843.PubMedCrossRefGoogle Scholar
  18. LAZAROWITZ, S. G. and CHOPPIN, P. W. (1975) Virology 68, 440–454.PubMedCrossRefGoogle Scholar
  19. MADIN, S. H. and DARBY, N. B. Jr. (1958) Proc. Soc. Exp. Biol. Med. 98, 574–580.Google Scholar
  20. MANDEL, B. (1958) Virology 6, 424–447.PubMedCrossRefGoogle Scholar
  21. MORELL, A. G., GREGORIADIS, G., SCHEINBERG, H. I., HICKMAN, J. and ASHWELL, G. (1971) J. Biol. Chem. 246, 1461–1467.PubMedGoogle Scholar
  22. NEURATH, A. R., HASHIMOTO, N. and PRINCE, A. M. (1975) J. Gen. Virol. 27, 81–91.PubMedCrossRefGoogle Scholar
  23. NORONHA-BLOB, L. and SCHULZE, I. T. (1976) Virology 69, 314–322.CrossRefGoogle Scholar
  24. SCHULZE, I. T. (1970) Virology 42, 890–904.PubMedCrossRefGoogle Scholar
  25. SCHULZE, I. T. (1972) Virology 47, 181–196.PubMedCrossRefGoogle Scholar
  26. SCHULZE, I. T. (1973) Advan. Virus Res. 18, 1–55.CrossRefGoogle Scholar
  27. SCHULZE, I. T. (1975) in `Influenza Viruses and Influenza’ (Kilbourne, E. D., ed.) pp. 53, Academic Press, New York.Google Scholar
  28. SCHULZE, I. T. (1975a) in `Negative Strand Viruses’ (Barry, R. D. and Mahy, B. W. J., eds.) Vol. 1, pp. 161, Academic Press, New York.Google Scholar
  29. SUTTAJIT, M. and WINZLER, R. J. (1971) J. Biol. Chem. 246, 3398–3404.PubMedGoogle Scholar
  30. VAN LENTEN, L. and ASHWELL, G. (1971) J. Biol. Chem. 246, 1889–1894.PubMedGoogle Scholar
  31. WINZLER, R. J. (1969). In `Red Cell Membrane, Structure and Function’ (Jamieson, G. A. and Greenwald, T. J., eds.), p. 157. Lippincott, Philadelphia, Pennsylvania.Google Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • M. Vijaya Lakshmi
  • Chi-Lui Der
  • Irene T. Schulze

There are no affiliations available

Personalised recommendations