Structural Studies of the Hemagglutinin of the Asian Influenza Virus Japan/305/57 — Bellamy/42 (H2N1).Cyanogen Bromide Cleavage of the Larger Polypeptide Chain HA1

  • M. D. Waterfield
  • J. J. Skehel
  • Y. Nakashima
  • A. Gurnett
  • T. Bilham
Part of the Topics in Infectious Diseases book series (TIDIS, volume 3)


A structural study of the hemagglutinin from the influenza virus variant Japan/305 /57 - Bellamy/42 (H2N1) is described. The two disulfide bonded glycopolypeptide chains (BHA1 and BHA2 were separated from the hemagglutinin which had been released from virus with stem Bromelain (EC The larger glycopolypeptide BHA1 contained 25% carbohydrate composed of fucose, mannose, galactose and N-acetyl glucosamine in the ratio (1:3: 3.2:5.4), linked through asparagine side chains to a polypeptide chain of approximately 340 amino acids. Cyanogen bromide (CNBr) cleavage of BHA1 is described. Seven CNBr fragments have been purified and their order partially determined by sequence analysis of overlapping protease generated peptides. Three CNBr peptides are glycosylated and three peptides contain cysteine residues. The implications of this study on knowledge of the hemagglutinin structure and function is discussed.


Cyanogen Bromide Cyanogen Bromide Fragment Stem Bromelain Cyanogen Bromide Cleavage Total Amino Acid Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bradshaw, R A, Garner, W H. and Gurd, F R N. (1969) J. Bid. Chem. 244, 2149–2158.Google Scholar
  2. Brauer, A W. Margolies, M. N. and Haber, E. (1975) Biochemistry 14, 3029–3035.PubMedCrossRefGoogle Scholar
  3. Chang, J. Y., Delange, R. J., Shaper, J. H. and Glazer, A. N. (1976) J. Biol. Chem. 251, 695–700.PubMedGoogle Scholar
  4. Gross, E. and Witkop, B. (1961) J. Am. Chem. Soc. 83, 1510–1511.CrossRefGoogle Scholar
  5. Hartley, B. S. (1970) Biochem. J. 119, 805–822.PubMedGoogle Scholar
  6. Hay, A. J. (1974) Virology 60, 398–418.PubMedCrossRefGoogle Scholar
  7. Herman, A. C. and Vanaman, T. C. (1975) Anal. Biochem. 64, 550–555.PubMedCrossRefGoogle Scholar
  8. Katz, A. M., Dreyer, W. J. and Anfinsen, C. B. (1959) J. Biol. Chem. 234, 2897–2900.PubMedGoogle Scholar
  9. Klenk, H-D., Rott, R., Orlich, M. and BLÖDorn, J. (1975) Virology 68, 426–439.PubMedCrossRefGoogle Scholar
  10. Klenk, H-D., Scholtissek, C. and Rott, R. (1972) Virology 49, 723–734.PubMedCrossRefGoogle Scholar
  11. Laine, R. A., Esselman, W. J. and Sweeley, C. C. (1972) in `Methods in Enzymology’, Xxviii, 159–167.Google Scholar
  12. Laver, W. G. (1971) Virology 45, 275–288.PubMedCrossRefGoogle Scholar
  13. Laver, W. G. (1973) Advan. Virus Res. 18, 57–103.CrossRefGoogle Scholar
  14. Lazarowitz, S. G., Compans, R. W. and Choppin, P. W. (1971) Virology 46, 828–843.CrossRefGoogle Scholar
  15. McCauley, J., Skehel, J. J. and Waterfield, M. D. (1977) this volume.Google Scholar
  16. Pisano, J. J. and Bronzert, T. J. (1969) J. Biol. Chem. 244, 5597–5607.PubMedGoogle Scholar
  17. Schulze, I. T. (1973) Advan. Virus Res. 18, 1–55.CrossRefGoogle Scholar
  18. Skehel, J. J. and Schild, G. C. (1971) Virology 44, 396–408.PubMedCrossRefGoogle Scholar
  19. Skehel, J. J. and Waterfield, M. D. (1975) Proc. Nat. Acad. Sci. Usa. 72, 93–97.CrossRefGoogle Scholar
  20. Smithies, 0., Gibson, D., Fanning, E. M., Goodfleish, R. M., Gilman, J. G. and Ballantyne, D. L. (1971) Biochemistry 10, 4912–4921.PubMedCrossRefGoogle Scholar
  21. Smyth, D. G., Stein, W. H. and Moore, S. (1963) J. Biol. Chem. 238, 227–234.PubMedGoogle Scholar
  22. Wiley, D. C., Skehel, J. J. and Waterfield, M. D. (1977) Virology in press.Google Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • M. D. Waterfield
  • J. J. Skehel
  • Y. Nakashima
  • A. Gurnett
  • T. Bilham

There are no affiliations available

Personalised recommendations