The Chemistry of Antigenic Variation in Influenza a Virus Hemagglutinin

  • B. A. Moss
  • P. Anne Underwood
Part of the Topics in Infectious Diseases book series (TIDIS, volume 3)


Single-step antigenic mutants, derived experimentally from the strain A/NT60/68 (H3N2), have been used to study the chemistry of antigenic variation within the present subtype of influenza A virus. These mutants mimic the antigenic drift of field strains that arose naturally between 1968 and 1973. Hemagglutinin, the major viral coat antigen, was prepared free of neuraminidase by controlled digestion of each virus strain with the protease, bromelain. The antigenic reactivity of the hemagglutinin was not altered by this treatment.

The hemagglutinin preparations, after reduction and S-alkylation, were digested with trypsin and compared by fluorescent dansyl-peptide mapping on thin layers of silica gel. This sensitive mapping technique, operating on a nanomole of protein, permitted resolution of virtually all the tryptic peptides.

The maps of all strains were identical, except for one or two peptides migrating differently. The variable peptides were confined to the larger subunit (HAI) of the hemagglutinin molecule. Thus, variation within a hierarchic series of antigenic mutants is associated with minor changes in the primary structure of the larger hemagglutinin subunit. Since the strains examined differed only in their antigenic properties, it is likely that the variable peptide in which amino acid substitutions occurred formed part of the antigenic determinant.


Antigenic Variation Guanidine Hydrochloride Hemagglutinating Activity Sucrose Density Gradient Centrifugation Influenza Virus Hemagglutinin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, J. C. (1967) Methods in Enzymology, Vol. XI, 330–339.Google Scholar
  2. Brand, C. M. and Skehel, J. J. (1976) Nature New Biol. 238, 145–147.Google Scholar
  3. Bucher, D. J., LI, S. S-L., Kehoe, J. M. and Kilbourne, E. D. (1976) Proc. Nat. Acad. Sci. Usa. 73, 238–242.CrossRefGoogle Scholar
  4. Eckert, E. A. (1973) J. Virol, 11, 183–192.PubMedGoogle Scholar
  5. Fazekas DE ST. Groth, S. (1952) J. Hyg. Camb. 50, 471–490.CrossRefGoogle Scholar
  6. Fazekas DE ST. Groth, S. (1969a) J. Immunol. 103, 1107–1115.Google Scholar
  7. Fazekas DE ST. Groth, S. (1969b) Bull. Who 41, 651–657.Google Scholar
  8. Fazekas DE ST. Groth, S. (1970) Arch. Environ. Health 21, 293–303.CrossRefGoogle Scholar
  9. Fazekas DE ST. Groth, S. (1975) in `Negative Strand Viruses’, (Mahy, B. W. J. and Barry, R. D., eds.) Academic Press. London. Vol. 2, 741–754.Google Scholar
  10. Fazekas DE ST. Groth, S. (1977) this volume.Google Scholar
  11. Fazekas DE ST. Groth, S. and Cairns, H. J. F. (1952) J. Immunol. 69, 173.Google Scholar
  12. Fazekas DE ST. Groth, S. and Forster, H. (1973) Annual Report of the Basel Institute for Immunology, pp. 99.Google Scholar
  13. Fazekas DE ST. Groth, S. and Graham, D. M. (1955) Brit. J. Exp. Path. 35, 60–74.Google Scholar
  14. Fazekas DE ST. Groth, S. and Hannoun, C. (1973) Compte Rendu Acad. Sci. Paris, 276, 1917–1920 (series D)Google Scholar
  15. Fey, G. and Hirt, B. (1974) Cold Spring Harbor Symp. Quant. Biol. 39, 235–241.CrossRefGoogle Scholar
  16. Francis, T. and Shope, R. E. (1936) J. Exp. Med. 63, 645–653.PubMedCrossRefGoogle Scholar
  17. Green, R. W. and Bolognesi, D. P. (1974) Anal Biochem. 57, 108–117.PubMedCrossRefGoogle Scholar
  18. Gros, C. (1967) Bull. Soc. Chimi. France, 10, 3952–3954.Google Scholar
  19. Ingram ; V. M. (1958) Biochim. Biophys. Acta 28,539.Google Scholar
  20. Kapitany, R. A. and Zebrowski, E. J. (1973) Anal Biochem. 56, 361–369.PubMedCrossRefGoogle Scholar
  21. Kendal, A. P. and Eckert, E. A. (1972) Biochim. Biophys. Acta 258, 484–495.CrossRefGoogle Scholar
  22. Kendal, A. P. and Kiley, M. P. (1973) J. Virol. 12, 1482–1490.PubMedGoogle Scholar
  23. Laemmli, U. K. (1970) Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  24. Laver, W. G. (1964) J. Mol. Biol. 9, 109–124.PubMedCrossRefGoogle Scholar
  25. Laver, W. G. (1969) in `Fundamental Techniques in Virology’ (Habel, K.and Salzman, N. eds.) Academic Press, N.Y. 371–378.Google Scholar
  26. Laver, W. G. (1973) in `Advances in Virus Research’ (Lauffer, M. A., Bang, F. B.Google Scholar
  27. Maramorasch, K. and Smith, K. M., eds.) Academic Press, N.Y., 18, 57–103.Google Scholar
  28. Laver, W. G., Downie, J. C. and Webster, R. G. (1974) Virology 59, 230–244.PubMedCrossRefGoogle Scholar
  29. Laver, W. G. and Webster, R. G. (1968) Virology 34, 193–202.PubMedCrossRefGoogle Scholar
  30. Laver, W. G. and Webster, R. G. (1971) Virology 48, 445–455.CrossRefGoogle Scholar
  31. Laver, W. G. and Webster, R. G. (1973) Virology 51, 383–391.PubMedCrossRefGoogle Scholar
  32. Layne, E. (1957) Methods in Enzymology, Vol. Iii, 447–454.Google Scholar
  33. Magill, T. P. and Francis, T. (1936) Proc. Soc. Exp. Biol. Med. 35, 463–466.Google Scholar
  34. Margolis, J. and Kenrick, K. G. (1968) Anal. Biochem. 25, 347–362.PubMedCrossRefGoogle Scholar
  35. Means, G. E. and Feeney, R. E. (1975) Chemical Modification of Proteins. Holden-Day Inc., San Francisco.Google Scholar
  36. Moss, B. A. (1977) Methods in Immunology. Academic Press, Manuscript in preparation.Google Scholar
  37. Moss, B. A. and Hamilton, E. A. (1974) Biochim. Biophys. Acta 371, 379–391.CrossRefGoogle Scholar
  38. Reimer, C. B., Baker, R. S., Neulin, T. W. and Havens, M: L. (1966) Science 152, 1503–1504.Google Scholar
  39. Schmer, G. and Kreil, G. (1967) J. Chromatog. 28, 458–461.CrossRefGoogle Scholar
  40. Schulze, I. T. (1973) Adv. Virus Res. 18, 1–55.CrossRefGoogle Scholar
  41. Segrest, J. P. and Jackson, R. L. (1972) Methods in Enzymology, Vol. Xxviii, 54–63.Google Scholar
  42. Skehel, J. J. and Waterfield, M. D. (1975) Proc. Nat. Acad. Sci. Usa. 72, 93–97.CrossRefGoogle Scholar
  43. Smorodintseff, A. A., Drobyshevskaya, A. I. and Shishkina, O. I. (1936) Lancet 2, 1383–1385.CrossRefGoogle Scholar
  44. Spivak, V.A., Levjant, S. P., Katrukha, S. P. and Varshavsky, J. M. (1971) Anal. Biochem. 44, 503–518.PubMedCrossRefGoogle Scholar
  45. Stone, J. D. (1949) Aust. J. Exp. Biol. 27, 337–352.Google Scholar
  46. Tamura, Z., Nakajima, T., Nakayama, T., Pisano, J. J. and Udenfriend, S. (1973) Anal. Biochem. 52, 595–606.PubMedCrossRefGoogle Scholar
  47. Terhorst, C. Parham, P., Mann, D. L. and Strominger, J. L. (1976) Proc. Nat. Acad. Sci. Usa. 73, 910–914.CrossRefGoogle Scholar
  48. Vandekerckhove, J. and Van Montagu, M. (1974) Eur. J. Biochem. 44, 279–288.PubMedCrossRefGoogle Scholar
  49. Ward, C. W. and Dopheide, T. A. A. (1976) Febs Letters 65, 365–368.PubMedCrossRefGoogle Scholar
  50. Webster, R. G. and Laver, W. G. (1971) Progr. Med. Viro!. 13, 271–338.Google Scholar
  51. Weiner, A. M., Platt, T. and Weber, K. (1972) J. Biol. Chem. 247, 3242–3251.PubMedGoogle Scholar
  52. Zanetta, J. P. Vincendon, G., Mandel, P. and Gombos, G. (1970) J. Chromatog. 51, 441–458.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • B. A. Moss
  • P. Anne Underwood

There are no affiliations available

Personalised recommendations