Advertisement

Quantum Effects in Transport Phenomena

  • Karlheinz Seeger
Part of the Springer Study Edition book series (SSE)

Abstract

In Chap.2 we have learned how the quantization of the atomic energy levels results in the band structure of the crystalline solid. However, this is not the only domain of quantum mechanics in semiconductivity. Although most transport phenomena can be explained by the assumption of a classical electron gas, there are some which can be understood only by quantum mechanical arguments. In Chap.9a we will treat phenomena which rely on the quantum mechanical “tunnel effect”, while in Chaps.9b-d the quantization of electron orbits in a strong magnetic field with the formation of “Landau levels” will be the basis for an understanding of the “oscillatory” behavior of transport phenomena.

Keywords

Quantum Effect Optical Phonon Strong Magnetic Field Landau Level Hall Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Esaki, Phys. Rev. 109 (1958) 603.ADSCrossRefGoogle Scholar
  2. [2]
    For a review see e.g. W. F. Chow: Principles of Tunnel Diode Circuits. New York: J. Wiley and Sons. 1964.Google Scholar
  3. [3]
    E. O. Kane, J. Appl. Phys. 32 (1961) 83; J. Phys. Chem. Solids 2 (1960) 181.Google Scholar
  4. [4]
    J. Karlovsky, Phys. Rev. 127 (1962) 419.ADSCrossRefGoogle Scholar
  5. [4]
    J. Karlovsky, Phys. Rev. 127 (1962) 419.ADSCrossRefGoogle Scholar
  6. [5]
    E. O. Kane, Phys. Rev. 131 (1963) 79.ADSCrossRefMATHGoogle Scholar
  7. [6]
    S. M. Sze: Physics of Semiconductor Devices. New York: J. Wiley and Sons. 1969.Google Scholar
  8. [7]
    P. Thomas and H. J. Queisser, Phys. Rev. 175 (1968) 983; for reviews see e.g. P. Thomas: Fachberichte DPG, p. 114. Stuttgart: Teubner. 1968, and H. Zetsche, ibid. 1970, p. 172.Google Scholar
  9. [8]
    C. Zener, Proc. Roy. Soc. (London) 145 (1934) 523; K. B. McAfee, E. J. Ryder, W. Shockley, and M. Sparks, Phys. Rev. 83 (1951) 650.Google Scholar
  10. [9]
    S. L. Miller, Phys. Rev. 99 (1955) 1234.Google Scholar
  11. [1]
    L. D. Landau, Zeitschr. f. Physik 64 (1930) 629.ADSCrossRefMATHGoogle Scholar
  12. [7]
    P. Thomas and H. J. Queisser, Phys. Rev. 175 (1968) 983; for reviews see e.g. P. Thomas: Fachberichte DPG, p. 114. Stuttgart: Teubner. 1968, and H. Zetsche, ibid. 1970, p. 172.Google Scholar
  13. [8]
    C. Zener, Proc. Roy. Soc. (London) 145 (1934) 523; K. B. McAfee, E. J. Ryder, W. Shockley, and M. Sparks, Phys. Rev. 83 (1951) 650.Google Scholar
  14. [9]
    S. L. Miller, Phys. Rev. 99 (1955) 1234.Google Scholar
  15. [1]
    L. D. Landau, Zeitschr. f. Physik 64 (1930) 629.ADSCrossRefMATHGoogle Scholar
  16. [2]
    G. Bauer and H. Kahlert, Phys. Rev B5 (1972) 566 and Proc. Int. Conf. Semic. Physics, Cambridge, Mass., 1970 (S. P. Keller, J. C. Hensel, and F. Stern, eds.), p. 65. Oak Ridge/Tenn.: USAEC. 1970.Google Scholar
  17. [3]
    L. Shubnikov and W. J. de Haas, Leiden Commun. 207a, 207e, 207d, 210a (1930).Google Scholar
  18. [4]
    E. N. Adams and T. D. Holstein, J. Phys. Chem. Solids 10 (1959) 254.ADSCrossRefGoogle Scholar
  19. [5]
    see e.g. L. I. Schiff: Quantum Mechanics, p. 441. New York: McGraw-Hill. 1968; for electrons in III-Y compounds see M. Cardona, J. Phys. Chem. Solids 24 (1963) 1543.Google Scholar
  20. [6]
    R. B. Dingle, Proc. Roy. Soc. (London) A211 (1952) 517.Google Scholar
  21. [7]
    R. A. Isaacson and F. Bridges, Solid State Comm. 4 (1966) 635.ADSCrossRefGoogle Scholar
  22. [8]
    G. Bauer and H. Kahlert, Phys. Lett. 41A (1972) 351.Google Scholar
  23. [9]
    L. M. Roth and P. N. Argyres: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Vol.!., p. 159. New York: Acad. Press. 1966, and the article on thermomagnetic effects by S. M. Puri and T. H. Geballe, ibid., p. 203.Google Scholar
  24. [10]
    W. J. de Haas and P. M. van Alphen, Leiden Commun. 208d, 212a (1930), and 220d (1933).Google Scholar
  25. Strictly speaking the Bohr magneton is µoiAB where µn is the permeability of free space.Google Scholar
  26. [7]
    R. A. Isaacson and F. Bridges, Solid State Comm. 4 (1966) 635.ADSCrossRefGoogle Scholar
  27. [8]
    G. Bauer and H. Kahlert, Phys. Lett. 41A (1972) 351.CrossRefGoogle Scholar
  28. [9]
    L. M. Roth and P. N. Argyres: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Vol.1., p. 159. New York: Acad. Press. 1966, and the article on thermomagnetic effects by S. M. Puri and T. H. Geballe, ibid., p. 203.Google Scholar
  29. [10]
    W. J. de Haas and P. M. van Alphen, Leiden Commun. 208d, 212a (1930), and 220d (1933).Google Scholar
  30. Strictly speaking the Bohr magneton is µoµB where µo is the permeability of free space.Google Scholar
  31. [11]
    see e.g. R. A. Smith: The Physical Principles of Thermodynamics, p. 154. London: Chapman and Hall. 1952, and R. A. Smith: Wave Mechanics of Crystalline Solids, p. 384. London: Chapman and Hall. 1961.Google Scholar
  32. [12]
    D. Shoenberg: The Physics of Metals, 1. Electrons (J. M. Ziman, ed.). Cambridge: Univ. Press. 1969; for a derivation of Eq.(9b.15) see e.g. J. M. Ziman: Principles of the Theory of Solids, chap. 9.7. Cambridge: Univ. Press. 1964.Google Scholar
  33. [1]
    Y. Yafet, R. W. Keyes, and E. N. Adams, J. Phys. Chem. Solids 1 (1956) 137.ADSCrossRefGoogle Scholar
  34. [2]
    R. W. Keyes and R. J. Sladek, J. Phys. Chem. Solids 1 (1956) 143.ADSCrossRefGoogle Scholar
  35. [3]
    E. H. Putley, Proc. Phys. Soc. (London) 76 (1960) 802; J. Phys. Chem. Solids 22 (1961) 241.ADSCrossRefGoogle Scholar
  36. [4]
    L. J. Neuringer, Proc. Int. Conf. Phys. Semicond. Moscow 1968, p. 715. Leningrad: Nauka. 1968.Google Scholar
  37. [5]
    E. J. Fantner, thesis, Univ. Wien, Austria, 1973.Google Scholar
  38. [2]
    R. W. Keyes and R. J. Sladek, J. Phys. Chem. Solids 1 (1956) 143.ADSCrossRefGoogle Scholar
  39. [3]
    E. H. Putley, Proc. Phys. Soc. (London) 76 (1960) 802; J. Phys. Chem. Solids 22 (1961) 241.ADSCrossRefGoogle Scholar
  40. [4]
    L. J. Neuringer, Proc. Int. Conf. Phys. Semicond. Moscow 1968, p. 715. Leningrad: Nauka. 1968.Google Scholar
  41. [5]
    E. J. Fantner, thesis, Univ. Wien, Austria, 1973.Google Scholar
  42. [6]
    E. H. Putley: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Vol.!, p. 289. New York: Acad. Press. 1966.Google Scholar
  43. [1]
    V. L. Gurevich and Yu. A. Firsov, Zh. Eksp. Teor. Fiz. 40 (1961) 199 [Engl.: Soy. Phys.-JETP 13 (1961) 137. 1.Google Scholar
  44. [2]
    M. I. Klinger, Fiz. Tverd. Tela 3 (1961) 1342 [Engl.: Soy. Phys. Solid State 3 (1961) 974.].Google Scholar
  45. [3]
    Yu. A. Firsov, V. L. Gurevich, R. V. Parfeniev, and S. S. Shalyt, Phys. Rev. Letters 12 (1964) 660.ADSCrossRefGoogle Scholar
  46. [1]
    V. L. Gurevich and Yu. A. Firsov, Zh. Eksp. Teor. Fiz. 40 (1961) 199 [Engl.: Soy. Phys.-JETP 13 (1961) 137.].Google Scholar
  47. [2]
    M. I. Klinger, Fiz. Tverd. Tela 3 (1961) 1342 [Engl.: Soy. Phys. Solid State 3 (1961) 974.].Google Scholar
  48. [3]
    Yu. A. Firsov, V. L. Gurevich, R. V. Parfeniev, and S. S. Shalyt, Phys. Rev. Letters 12 (1964) 660.ADSCrossRefGoogle Scholar
  49. [4]
    A calculation for degenerate semiconductors has been presented by A. L. Efros, Fiz. Tverd. Tela 3 (1961) 2848 [Engl.: Soy. Phys. Solid State 3 (1962) 2079.].Google Scholar
  50. [5]
    L. Eaves, R. A. Stradling, and R. A. Wood, Proc. Int. Conf. Semic. Physics, Cambridge, Mass., 1970 (S. P. Keller, J. C. Hensel, and F. Stern, eds.), p. 816. Oak Ridge/Tenn.: USAEC. 1970.Google Scholar
  51. [6]
    V. L. Gurevich and Yu. A. Firsov, Zh. Eksp. Teor. Fiz. 47(1964) 734 [Engl.: Soy. Phys.-JETP 20 (1964) 489.].Google Scholar
  52. [7]
    R. A. Stradling and R. A. Wood, J. Phys. C 1 (1968) 1711.Google Scholar
  53. [8]
    A. L. Mears, R. A. Stradling, and E. K. Inall, J. Phys. C 1 (1968) 821.ADSCrossRefGoogle Scholar
  54. [6]
    V. L. Gurevich and Yu. A. Firsov, Zh. Eksp. Teor. Fiz. 47(1964) 734 [Engl.: Soy. Phys.-JETP 20 (1964) 489.].Google Scholar
  55. [7]
    R. A. Stradling and R. A. Wood, J. Phys. C 1 (1968) 1711.Google Scholar
  56. [8]
    A. L. Mears, R. A. Stradling, and E. K. Inall, J. Phys. C 1 (1968) 821.ADSCrossRefGoogle Scholar
  57. [9]
    R. A. Reynolds, Solid State Electronics 11 (1968) 385.ADSCrossRefGoogle Scholar
  58. [10]
    R. A. Stradling, L. Eaves, R. A. Hoult, A. L. Mears, and R. A. Wood, Proc. Int. Conf. Semic. Physics Cambridge/Mass. 1970 (S. P. Keller, J. C. Hensel, and F. Stern, eds.), p. 816. Oak Ridge/Tenn.: USAEC. 1970.Google Scholar
  59. [11]
    R. A. Wood, R. A. Stradling, and I. P. Molodyan, J. Phys. C 3 (1970) L 154.Google Scholar
  60. [12]
    S. M. Puri and T. H. Geballe: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Vol. 1, p. 203. New York: Acad. Press. 1966.Google Scholar
  61. [11]
    R. A. Wood, R. A. Stradling, and I. P. Molodyan, J. Phys. C 3 (1970) L 154.Google Scholar
  62. [12]
    S. M. Puri and T. H. Geballe: Semiconductors and Semimetals (R. K. Wil-lardson and A. C. Beer, eds.), Vol. 1, p. 203. New York: Acad. Press. 1966.Google Scholar

Copyright information

© Springer-Verlag Wien 1973

Authors and Affiliations

  • Karlheinz Seeger
    • 1
    • 2
  1. 1.Ludwig Boltzmann-Institut für FestkörperphysikWienÖsterreich
  2. 2.Institut für Angewandte PhysikUniversität WienÖsterreich

Personalised recommendations