Advertisement

Charge and Energy Transport in a Non-degenerate Electron Gas

  • Karlheinz Seeger
Part of the Springer Study Edition book series (SSE)

Abstract

In the preceding chapters we have seen that a mobile charge carrier in a semiconductor has an effective mass m which is different from the free electron mass mo. The effective mass takes care of the fact that the carrier is subject to the crystal field. In discussing the velocity distribution of the “gas” of carriers we found that the Fermi-Dirac distribution holds in general and that the MaxwellBoltzmann distribution
(4a.1)
is an approximation of the former which is valid for “non-degenerate” semiconductors. Here the carrier density is small compared with the effective density of states Nc in the conduction band and Nv in the valence band, Eq.(3a.31). For these distributions no externally applied electric fields were assumed to be present. Instead, the calculations were based on the assumption of thermal equilibrium.

Keywords

Boltzmann Equation Hall Effect Thermoelectric Power Energy Transport Hall Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.Onsager, Phys.Rev.37 (1931) 405; 38 (1931) 2265; see also e.g. A.C.Smith, J.F.Janak, and R.B.Adler,: Electronic Conduction in Solids, Chap.3.5. New York,: McGraw-Hill. 1967.Google Scholar
  2. [2]
    S.R.de Groot,: Thermodynamics of Irreversible Processes. Amsterdam,: North-Holland Publ.Co. 1953.Google Scholar
  3. [1]
    Part of this treatment is closely related to L.Spitzer,: Physics of Fully Ionized Gases, appendix. New York,: J.Wiley and Sons. 1962.Google Scholar
  4. [1]
    O.Madelung and H.Weiss, Z.Naturf. 9a (1954) 527.ADSGoogle Scholar
  5. [2]
    N.I.Volokobinskaya, V.V.Galavanov, and D.N.Nasledov, Fiz.Tverd.Tela 1 (1959) 756; (Engl.,: Sov.Phys.-Solid State 1 (1959) 687 ).Google Scholar
  6. [1]
    R.K.Willardson, T.Harman, and A.C.Beer, Phys.Rev. 96 (1954) 1512. Chap.4e,: Google Scholar
  7. [1]
    O.M.Corbino, Phys. Zeitschr. 12 (1911) 561.MATHGoogle Scholar
  8. [2]
    H.Welker and H.Weiss, Zeitschr. f. Physik 138 (1954) 322.Google Scholar
  9. [1]
    J. A. M. Dikhoff, Solid-State Electronics 1 (1960) 202; P. R. Camp, J. Appl. Phys. 25 (1954) 459.CrossRefGoogle Scholar
  10. [2]
    H. Rupprecht, R. Weber, and H. Weiss, Zeitschr.f.Naturf. 15a (1960) 783.Google Scholar
  11. [3]
    C. Herring, J. Appl. Phys. 31 (1960) 1939; H. Weiss, J. Appl. Phys. Suppl. 32 (1961) 2064.Google Scholar
  12. [1]
    For the evaluation of integrals of interest in the theory of a highly degenerate electron gas see e.g. A. C. Smith, J. F. Janak, and R. B. Adler,: Electronic Conduction in Solids, appendix I. New York,: McGraw-Hill. 1967.Google Scholar
  13. [1]
    J. A. M. Dikhoff, Solid-State Electronics 1 (1960) 202; P. R. Camp, J. Appl. Phys. 25 (1954) 459.CrossRefGoogle Scholar
  14. [2]
    H. Rupprecht, R. Weber, and H. Weiss, Zeitschr.f.Naturf. 15a (1960) 783.Google Scholar
  15. [3]
    C. Herring, J. Appl. Phys. 31 (1960) 1939; H. Weiss, J. Appl. Phys. Suppl. 32 (1961) 2064.Google Scholar
  16. [1]
    For the evluation of integrals of interest in the theory of a highly degenerate electron gas see e.g. A. C. Smith, J. F. Janak, and R. B. Adler,: Electronic Conduction in Solids, appendix I. New York,: McGraw-Hill.Google Scholar
  17. [2]
    A review is presented by J. Appel,: Progress in Semiconductors. (A. F. Gibson and R. E.Burgess, eds.), Vol.5, p. 142. London,: Temple Press. 1960.Google Scholar
  18. [3]
    T. H. Geballe and G. W. Hull, Phys.Rev. 110 (1958) 773.Google Scholar
  19. [4]
    H. Weiss,: Halbleiter und Phosphore. (M. Schön and H. Welker, eds.),p. 497. Braunschweig,: Vieweg. 1957.Google Scholar
  20. [5]
    J. Schröder, Rev.Sci.Instr. 34 (1963) 615.ADSCrossRefGoogle Scholar
  21. [6]
    W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves, and D. L. McElroy, Phys. Rev. 167 (1968) 765.Google Scholar
  22. [6]
    W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves, and D. L. McElroy, Phys. Rev. 167 (1968) 765.Google Scholar
  23. [7]
    For a calculation see e.g. O. Madelung,: Grundlagen der Halbleiterphysik, p.1 17. Heidelberger Taschenbücher, Bd. 71. Berlin - Heidelberg - New York,: Springer. 1970.Google Scholar
  24. [1]
    M. W. Zemansky,: Heat and Thermodynamics, 4th ed., p. 192. New York,: McGraw-Hill. 1957Google Scholar
  25. [6]
    C. Herring,: Halbleiter and Phosphore (M. Schön and H. Welker, eds.), p. 184. Braunschweig,: Vieweg. 1958.Google Scholar
  26. [7]
    H. P. R. Frederikse, Phys. Rev. 91 (1953) 491; 92 (1953) 248. For a review article on thermoelectric and thermomagnetic effects see L. Sosnowski,: Semiconductors, Proc. Int. School of Physics XXII, p.436. London,: Acad. Press. 1963.Google Scholar
  27. [1]
    M. W. Zemansky,: Heat and Thermodynamics, p.301. New York,: McGraw-Hill. 1951. R. Becker,: Theory of Heat, Chap.95. 2nd edition revised by G. Leibfried. Berlin-Heidelberg-New York,: Springer. 1967.Google Scholar
  28. [1]
    M. W. Zemansky,: Heat and Thermodynamics, p.301. New York,: McGraw-Hill. 1951. R. Becker,: Theory of Heat, Chap.95. 2nd edition revised by G. Leibfried. Berlin-Heidelberg-New York,: Springer. 1967.Google Scholar
  29. [2]
    C. Herring,: Halbleiter und Phosphore, p.184, appendix A. Braunschweig,: Vieweg. 1958.Google Scholar
  30. [3]
    R. Bowers, R. W. Ure, Jr., J. E. Bauerle, and A. J. Cornish, J. Appl. Phys. 30 (1959) 930. A. F. Joffé,: Semiconductor Thermoelements and Thermoelectric Cooling. London,: Infosearch. 1958; for additional literature see e.g. H. P. R. Frederikse, V. A. Johnson, and W. W. Scanlon,: Solid State Physics (K. Lark-Horowitz and V. A. Johnson, eds.), Vol. 6B, p.114. New York,: Acad. Press. 1959.Google Scholar
  31. [1]
    E. H. Putley,: The Hall Effect and Related Phenomena, p. 84. London,: Butterworth. 1960.Google Scholar
  32. [2]
    R. Wolfe, Semiconductor Products 6 (1963) 23; Sci. American 210 (1964) 70.Google Scholar
  33. [2]
    R. Wolfe, Semiconductor Products 6 (1963) 23; Sci. American 210 (1964) 70.Google Scholar
  34. [3]
    H. Wagini, Z. Naturforsch. 19a (1964) 1541.Google Scholar
  35. [4]
    A. C. Beer, J. A. Armstrong, and I. N. Greenberg, Phys. Rev. 107 (1957) 1506.Google Scholar
  36. [5]
    L. Sosnowski,: Proc. Int. Conf. Phys. Semicond. Paris 1964, p.341. Paris,: Dunod. 1964.Google Scholar
  37. [2]
    See e.g. C. Kittel,: Introduction to Solid State Physics, 2nd ed., chap. 4. New York,: J. Wiley and Sons, Inc. 1965.Google Scholar
  38. [3]
    E. G. S. Paige,: Progress in Semiconductors. (A.F.Gibson and R.E. Burgess, eds.),Vol. 8, p. 159. London,: Temple Press. 1964.Google Scholar
  39. [4]
    C. S. Smith,: Solid State Physics (F. Seitz and D. Turnbull, eds.), Vol.6, p. 175. New York,: Acad.Press. 1958.Google Scholar
  40. [5]
    W. Voigt,: Lehrbuch der Kristallphysik. Leipzig,: Teubner. 1928.MATHGoogle Scholar
  41. [6]
    C. S. Smith, Phys. Rev. 94 (1954) 42.ADSCrossRefGoogle Scholar
  42. [7]
    F. J. Morin, T. H. Geballe, and C. Herring, Phys. Rev. 105 (1957) 525.ADSCrossRefGoogle Scholar
  43. [7]
    F. J. Morin, T. H. Geballe, and C. Herring, Phys. Rev. 105 (1957) 525.Google Scholar
  44. [8]
    R. W. Keyes,: Solid State Physics (F. Seitz and D. Turnbull, eds.), vol.1 1, p.172,Table V and p.176,Table VI. New York,:Google Scholar
  45. [1]
    E. J. Ryder and W. Shockley, Phys.Rev. 81 (1951) 139.ADSCrossRefGoogle Scholar
  46. [2]
    H. Heinrich and K. Seeger, Verhandl.DPG (VI) 2 (1967) 26; K. Seeger, Acta Phys. Austriaca 27 (1968) 1.Google Scholar
  47. [3]
    H. Heinrich, G. Bauer, and D. Kasperkovitz, phys. stat. sol. 28 (1968) K 51.Google Scholar
  48. [4]
    E. J. Ryder, Phys. Rev. 90 (1953) 766.ADSCrossRefGoogle Scholar
  49. [5]
    J. B. Gunn,: Progress in Semiconductors (A. F. Gibson and R. E. Burgess, eds.), Vol. 2, p. 213. London,: Temple Press. 1957.Google Scholar
  50. [6]
    K. Seeger, Zeitschr. f. Physik 172 (1963) 68.ADSCrossRefGoogle Scholar
  51. [7]
    P. Kästner, E. P. Röth,[8] K. Seeger and K. F. Hess, Zeitschr.f.Physik 237 (1970) 252.Google Scholar
  52. [9]
    T. N. Morgan and C. E. Kelly, Phys. Rev. 137 (1965) A 1573.Google Scholar
  53. [10]
    H. Kahlert, K. Hess, and K. Seeger, Solid State Comm. 7 (1969) 1149. and K. Seeger, Zeitschr. f. Physik 187 (1965) 359.Google Scholar
  54. [1]
    K. S. Champlin and G. H. Glover, J. Appl. Phys. 37 (1966) 2355.Google Scholar
  55. [2]
    K. Seeger and K. Hess, Zeitschr. f. Physik 237 (1970) 252.Google Scholar
  56. [1]
    A. van der Ziel,: Noise. New York,: Prentice-Hall. 1954.Google Scholar
  57. [2]
    H. Nyquist, Phys. Rev. 32 (1928) 110; see also e.g. R. Becker,: Theory of [3] A. L. McWhorter,: Semiconductor Surface Physics (R. H. Kingston, ed.), p. 207. Philadelphia,: Univ. of Pennsylvania Press. 1957; R. H. Kingston and A. L. McWhorter, Phys. Rev. 103 (1956) 534.Google Scholar
  58. [4]
    T. G. Maple, L. Bess, and H. A. Gebbie, J. Appl. Phys. 26 (1955) 490; D. Sautter and K. Seiler, Zeitschr. f. Naturf. 12a (1957) 490.Google Scholar
  59. [5] W. Shockley,: Electrons and Holes in Semiconductors, p. 345. Princeton, N. J.,: Van Nostrand. 1950; see also Chap.6n. [6]
    G. Lautz and M. Pilkuhn, Naturwiss. 47 (1960) 198 and 394; M. Pilkuhn, Thesis, T. H. Braunschweig 1960.Google Scholar
  60. [7]
    E. Erlbach and J. B. Gunn,: Proc. Int. Conf. Phys. Semic. Exeter 1962, p. 128. London,: The Institute of Physics and the Phys.Soc.Google Scholar
  61. [8]
    C. A. Bryant, Bull. Am. Phys. Soc. (Ser. II ) 9 (1964) 62.Google Scholar
  62. [9]
    P. J. Price,: Fluctuation Phenomena in Solids (R. E. Burgess, ed.), Chap.8. New York,: Acad. Press. 1964. Heat, 2nd edition revised by G. Leibfried, chap.85. Berlin -Heidelberg - New York,: Springer. 1967Google Scholar

Copyright information

© Springer-Verlag Wien 1973

Authors and Affiliations

  • Karlheinz Seeger
    • 1
    • 2
  1. 1.Ludwig Boltzmann-Institut für FestkörperphysikWienÖsterreich
  2. 2.Institut für Angewandte PhysikUniversität WienÖsterreich

Personalised recommendations