Energy Band Structure

  • Karlheinz Seeger
Part of the Springer Study Edition book series (SSE)


The “energy band structure” is the relation between energy and momentum of a carrier in a solid. For an electron in free space the energy is proportional to the square of the momentum. The factor of proportionality is 1/2m. where mo is the free electron mass. In the “simple model of band structure” the same relation between energy and momentum is assumed except that mo is replaced by an “effective mass” m. This may be larger or smaller than mo. Why this is so will be seen later in this chapter. Quite often the band structure is more complex and can be calculated even with electronic computers only semiempirically. A short description of some typical band structures will be given in Chap.2d and used for the calculation of charge transport in Chap. 7 and 8 while in Chap. 4 and 5 the transport properties will be calculated assuming the simple model of band structure (which is quite a good approximation for most purposes).


Valence Band Band Structure Effective Mass Brillouin Zone Heavy Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1] L. Kronig and W. J.Penneny, Proc. Roy. Soc (London) A 130 (1930) 499.ADSCrossRefGoogle Scholar
  2. [2]
    This has been adapted from A. Nussbaum,: Semiconductor Decice Physics. Sec. 1.9 and 1.13.Englewood Cliffs, N.J.,:pretice-Hall Inc. 1962.Google Scholar
  3. [3]
    See e.g R,A,Smith,: Wave Mechanics of Crystalline Solids, 2nd ed., Chap.6. 2 London,: Chapman and Hall Ltd. 1969.Google Scholar
  4. [4]
    E.O. Kane, J.,Phys. Chem. Solids 1 (1957) 249Google Scholar
  5. [5]
    D,Long,:Energy Bands in Semiconductors, p.49.New York,: J.Wiley and Sons, 1968.Google Scholar
  6. [6]
    S.Matz, J.Phys. Chem. Solids 28 (1967) 373Google Scholar
  7. [1]
    See. e.g. S.Flügge,: Rechenmethoden der Quatentheorie, 3rd ed., Problem Nr. 59. (Heidelberger Taschenbücher, Vol.6.) Berlin–Heidelberg–New York,: Springer. 1966Google Scholar
  8. [2]
    F. Hund und B.Mrowka, B.r. Sächs.Akad. Wiss 87 (1935) 185; 325Google Scholar
  9. [3]
    F.Hund,: Theorie des Aufbaues der Materie, chap. VII. Stuttgart,: Teubner 1961.Google Scholar
  10. [1]
    See e.g, H. Jomes,:The Theory of Brillouin Zones and Electronic States in Crystals. Amsterdam,: North Holland Publ. Co. 1960; F.Seitz,: Modern Theory of Solids. New York,: Mcgraw-Hill, 1940.Google Scholar
  11. [2]
    L.P.Bouchaert, R. Smoluchowski,and E.P.Wigner, Phys. Rev. 50 (1936) 58.Google Scholar
  12. [3]
    H.W.Streitwolf,: Gruppentheore in der Festkörperphysik. Leipzig,: Akad, Verlagsges. Geest und Portig. 1967.Google Scholar
  13. [4]
    D.Long,: Energy Bands in Semiconductors. New York,: J.Wiley and Sons. 1968.Google Scholar
  14. [5]
    C,Rigaux and G.Drilhorn, Proc.Intern. Conf. Phys. Semic. Kyoto. J.Phys. Soc Japan 21, Suppl. (1966) 1933Google Scholar
  15. [6]
    J.R.Drabble,: Progr. In Semic.(A.F.Gibson and R.E.Burgess, eds.). Vol.7,p. 45. London,: Temple Press. 1963.Google Scholar
  16. [7]
    D.L.Greenaway and G.Harbeke, J.Phys. Chem. Solids 26 (1965) 1585.Google Scholar
  17. [8]
    I.Melngailis, Journal de Physique (suppl. No.11–12) 29 (1968) C 4–84.Google Scholar
  18. [9]
    J.O.Dimmock. I.Melngailis, and A. J. Strauss, Phys.Rev. Lett. 16 (1966) 1193.Google Scholar
  19. [10]
    C.Vérié,: Festkörper-Probleme/Advances in Solid State Physics (O.Madelung, ed.),Vol.X. Oxford,: Pergamon. Braunschweig,: Vieweg. 1970.Google Scholar
  20. [11]
    S.Groves and W.Paul, Phys.Rev.Lett. 11 (1963) 194.Google Scholar
  21. [3]
    A.B.Pippard, Phil.Trans.A250 (1957) 325; see also W.Brauer,: Einführung in die Elektronentheorie der Metalle. Leipzig,: Geest und Portig K.G. 1966; J.M.Ziman, Contemporary Physics 3 (1962) 241.CrossRefGoogle Scholar
  22. [3]
    A.B.Pippard, Phil.Trans.A250 (1957) 325; see also W.Brauer,: Einführung in die Elektronentheorie der Metalle. Leipzig,: Geest und Portig K.G. 1966; J.M.Ziman, Contemporary Physics 3 (1962) 241.Google Scholar

Copyright information

© Springer-Verlag Wien 1973

Authors and Affiliations

  • Karlheinz Seeger
    • 1
    • 2
  1. 1.Ludwig Boltzmann-Institut für FestkörperphysikWienÖsterreich
  2. 2.Institut für Angewandte PhysikUniversität WienÖsterreich

Personalised recommendations