Advertisement

Impact Ionization and Avalanche Breakdown

  • Karlheinz Seeger
Part of the Springer Study Edition book series (SSE)

Abstract

Some aspects of impact ionization and avalanche breakdown in semiconductors are similar to the corresponding phenomena in gaseous discharges. Semiconductors may serve as model substances for gaseous plasmas since their ionic charges are practically immobile and therefore the interpretation of experimental data is facilitated. Impact ionization has been achieved both in the bulk of homogeneously doped semiconductors at low temperatures and in p-n junctions at room temperature. We will discuss these cases separately.

Keywords

Impact Ionization Depletion Region Breakdown Field Auger Process Avalanche Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Lautz: Halbleiterprobleme (F. Sauter, ed.), Vol. VI., p. 21. Braunschweig: Vieweg. 1961.Google Scholar
  2. [2]
    S. H. Koenig and G. R. Gunther-Mohr, J. Phys. Chem. Solids 2 (1957) 268; similar data have been obtained by N. Sclar and E. Burstein, J. Phys. Chem. Solids 2 (1957) 1.Google Scholar
  3. [1]
    G. Lautz: Halbleiterprobleme (F. Sauter, ed.), Vol. VI., p. 21. Braunschweig: Vieweg. 1961.Google Scholar
  4. [2]
    S. H. Koenig and G. R. Gunther-Mohr, J. Phys. Chem. Solids 2 (1957) 268; similar data have been obtained by N. Sciar and E. Burstein, J. Phys. Chem. Solids 2 (1957) 1.Google Scholar
  5. [3]
    K. Baumann, M. Kriechbaum, and H. Kahlert, J. Phys. Chem. Solids 31 (1970) 1163.ADSCrossRefGoogle Scholar
  6. [4]
    A. Zylbersztejn and E. Conwell, Phys. Rev. Lett. 11 (1963) 417.ADSCrossRefGoogle Scholar
  7. [5]
    S. H. Koenig, Int. Conf. Solid State Physics, Brussels 1958 (M. Desirant, ed.), p. 422. London: Acad. Press. 1960.Google Scholar
  8. [6]
    M. Lax, J. Phys. Chem. Solids 8 (1959) 66.ADSCrossRefGoogle Scholar
  9. [7]
    S. H. Koenig, R. D. Brown III, and W. Schillinger, Phys.Rev. 128 (1962) 1668.ADSCrossRefGoogle Scholar
  10. [8]
    K. Seeger, Zeitschr. f. Physik 182 (1965) 510.ADSCrossRefGoogle Scholar
  11. [9]
    N. Kawamura, Phys. Rev. 133 (1964) A 585; for n-Si see N. Kawamura, J. Phys. Chem. Solids 27 (1966) 919.ADSCrossRefGoogle Scholar
  12. [10]
    A. Zylbersztejn, J. Phys. Chem. Solids 23 (1962) 297.ADSCrossRefGoogle Scholar
  13. [11]
    G. Bauer and F. Kuchar, phys. stat. sol. (a) 13 (1972) 169.CrossRefGoogle Scholar
  14. [12]
    ; see also R. C. Curby and D. K. Ferry, phys. stat. sol. (a) 15 (1973) 319.Google Scholar
  15. [13]
    G. Nimtz, Proc. Int. Conf. Phys. Semic., Cambridge/Mass. 1970 (S. P. Keller, J. C. Hensel, and F. Stem, eds.), p. 396. Oak Ridge/Tenn.: USAEC. 1970.Google Scholar
  16. [14]
    A. L. McWhorter and R. H. Rediker, Proc. Int. Conf. Phys. Semic., Prague 1960, p. 134. Prague: Czech. Acad. Sciences. 1960.Google Scholar
  17. [15]
    B. K. Ridley, Proc. Phys. Soc. (London) 81 (1963) 996; A. M. Barnett, IBM-J. Res. Develop. 13 (1969) 522.Google Scholar
  18. [11]
    G. Bauer and F. Kuchar, phys. stat. sol. (a) 13 (1972) 169.CrossRefGoogle Scholar
  19. [16]
    R. F. Kazarinov and V. G. Skobov, Zh. Eksp. Teor. Fiz. 42 (1962) 1047. [Engl.: Sov. Phys. JETP 15 (1962) 726.]Google Scholar
  20. [17]
    See e.g. B. Ancker-Johnson: Semiconductors and Semimetals (R. K. Willard-son and A. C. Beer, eds.), Vol. 1, p. 379. New York: Acad. Press. 1966.Google Scholar
  21. [16]
    R. F. Kazarinovand V. G. Skobov, Zh. Eksp. Teor. Fiz. 42(1962) 1047. [Engl.: Soy. Phys. JETP 15 (1962) 726.]Google Scholar
  22. [17]
    See e.g. B. Ancker-Johnson: Semiconductors and Semimetals (R. K. Willard-son and A. C. Beer, eds.), Vol. 1, p. 379. New York: Acad. Press. 1966.Google Scholar
  23. [1]
    A. G. Chynoweth and K. G. McKay, Phys. Rev. 108 (1957) 29; for a review on charge multiplication phenomena see e.g. A. G. Chynoweth: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Vol. 4, p. 263. New York: Acad. Press. 1968.Google Scholar
  24. [2]
    C. A. Lee, R. A. Logan, R. L. Batdorf, J. J. Kleimack, and W. Wiegman, Phys. Rev. 134 (1964) A 761.Google Scholar
  25. [3]
    S. M. Sze: Physics of Semiconductor Devices, p. 60. New York: J. Wiley and Sons. 1969.Google Scholar
  26. [4]
    G. A. Baraff, Phys. Rev. 128 (1962) 2507; ibid. 133 (1964) A 26.Google Scholar
  27. [5]
    This follows closely J. E. Carroll: Hot Electron Microwave Generators, p. 171 ff. London: Arnold. 1970.Google Scholar
  28. [6]
    A. F. Gibson, J. W. Granville, and E. G. S. Paige, J. Phys. Chem. Solids 19 (1961) 198.ADSCrossRefGoogle Scholar
  29. [7]
    A. E. Michel, M. I. Nathan, and J. C. Marinace, J. Appl. Phys. 35 (1964) 3543.ADSCrossRefGoogle Scholar
  30. [8]
    W. T. Read, Bell Syst. Tech. J. 37 (1958) 401.CrossRefGoogle Scholar
  31. [9]
    W. Shockley, Bell Syst. Tech. J. 33 (1954) 799.CrossRefGoogle Scholar
  32. [10]
    J. E. Carroll: Hot Electron Microwave Generators, p. 190. London: Arnold. 1970; H. Hartnagel: Semiconductor Plasma Instabilities, p. 100. London: Heinemann. 1969; ref. 3, p. 200.Google Scholar

Copyright information

© Springer-Verlag Wien 1973

Authors and Affiliations

  • Karlheinz Seeger
    • 1
    • 2
  1. 1.Ludwig Boltzmann-Institut für FestkörperphysikWienÖsterreich
  2. 2.Institut für Angewandte PhysikUniversität WienÖsterreich

Personalised recommendations