Advertisement

Rock Mechanics pp 299-387 | Cite as

Rock Hydraulics

  • C. Louis
Part of the International Centre for Mechanical Sciences book series (CISM, volume 165)

Summary

This report gives some new considerations on rock hydraulics with application in the triple field of civil, mining and petroleum engineering. The rock medium is assumed to be a jointed medium with a low conductivity of the rock matrix.

After a brief analysis of the hydraulic characteristics of rock masses and of the laws governing flow in fissures, both continuous and discontinuous, this report examines the different mathematical or physical models (electrical or hydraulic) wich make it possible to solve problems of three-dimensional water flow through jointed media with one or more sets of parallel fractures. Several methods are suggested, according to the nature of the rock jointing. The mathematical or physical models are elaborated with the help of the concept of directional hydraulic conductivity directly measured by a new in situ technique.

The theory of water-flow through jointed rock has undergone rapid advances in recent years. Computing techniques can now be applied to very large, two and three dimensional problems. However, the application of these methods is completely inadequate if no in situ hydraulic parameters are available. Several suggestions are given for the control of groundwater flow and the hydraulic instrumentation.

Several practical examples concerning dam foundation, slope or underground openings, illustrate the methods of solution. In particular, the problem of drainage in rock is examined. A fundamental difference is made between the drainage of the joint network and the drainage of the rock matrix. Practical cases show that the optimum direction of the drain depends essentially on the geometry and orientation of the joints. For a required draining effect, the cost of a drainage system will be notably reduced if the geometry (direction, depth, etc...) is judiciously chosen.

Keywords

Rock Mass Hydraulic Conductivity Flow Network Rock Matrix Hydraulic Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baker W.J. (1955): Flow in fissured formations. Proc. 4. World Petroleum Congress Rome Sect. II. (p. 379–393 ).Google Scholar
  2. [2]
    Bear J. (1972): Dynamics of fluids in porous media. American Elsevier.Google Scholar
  3. [3]
    Bernaix J. (1967): Etudee géotechnique de la roche de Malpasset. Ed. Dunod, Paris. Thèse de Doct. (215 p.).Google Scholar
  4. [4]
    Bernaix J., Duffaut P. (1970): Auscultation piézométrique. 10. Congres des Grands Barrages, (1963) Montreal, Rep. 49. Q 38 (p. 935–960 ).Google Scholar
  5. [5]
    Castany G. (1963): Traité pratique des eaux souterraines. Dunod Ed., Paris (657 p.).Google Scholar
  6. [6]
    Dachler R. (1936): Grundwasserströmung. Springer Verlag. Wien (140 p.).Google Scholar
  7. [7]
    Duffaut P., Louis Cl. (1972): L’eau souterraine et l’équilibre des pentes naturelles, Bull. B.R.G.M. (2) III n24.Google Scholar
  8. [8]
    Dupuy M., Lefebvre du Prey E. (1968): L’anisotropie d’écoulement en milieux poreux présentant des intercalations horizontales discontinues. 3e Colloque de l’A.R.T.P.F., Pau Sept. 1968; Ed. Technip, Paris (p. 643–676 ).Google Scholar
  9. [9]
    Franciss F.O. (1970): Contribution à l’étude du mouvement de l’eau à travers les milieux fissurés. Thèse Doct. Jug. Université de Grenoble (1966–67).Google Scholar
  10. [10]
    Freeze R.A., Witherspoon P.A. (1968): Theoretical analysis of regional groundwater flow — 3 parts — Water Resources Research, 1966, V 2, n°- 4 (p. 641–656) 1957, V. 3, ri 2 (p. 623–634), 1968, V. 4, n2 3 (p. 581–590 ).Google Scholar
  11. [i i]
    Gringarten A.C., Ramey H.J. (1971): Unsteady state pressure distributions created by a well with a single horizontal fracture, partial penetration or restricted entry. Soc. Petro. Engrs. of AIME.Google Scholar
  12. [12]
    Gringarten A.C., Ramey H.J. (1972): Pressure analysis for fractured wells. Soc. Petrol. Engrs. 47th Annual Fall Meeting San Antonio. 8–11 Oct. 1972.Google Scholar
  13. [13]
    Habib P., Sabarly F. (1953): Etude de la circulation de l’eau dans un sol perméable par analogie électrique à trois dimensions. 3e Congrès Intern, de Mécanique des Sols, II (p. 250–254 ).Google Scholar
  14. [14]
    Hackeschmidt M. (1968): Der Aufbau eines räumlichen Widerstandsnetzwerkes mit Hilfe von elektrisch leitendem Papier. Freiberger Forschungshefte, Freiberg, Reihe Geophysique, C 214 (69 p.).Google Scholar
  15. [15]
    Hills E.S. (1966): Element of structural geology Science Paperbacks — Methuen and Co., Ltd., London.Google Scholar
  16. [16]
    Huard De La Marre P. (1955): Modèles analogiques à trois dimensions pour l’étude des écoulements de filtrations à surface libre. Comptes rendus Académie des Sciences, Paris, mai 1955, 240 (p. 2203–2205 ).Google Scholar
  17. [17]
    Huard De La Marre P. (1958): Résolutions des problèmes d’infiltration à surface libre au moyen d’analogies électriques. Thèse Faculté des Sciences, Paris, juin 1956. Publ. Scient. et Thechn. du Min. de l’Air, n2 340, (119 p.).Google Scholar
  18. [18]
    Jouanna P. (1972): Effet des sollicitations mécaniques sur les écoulements dans certains milieux fissurés. Thèse Doct. es. Sc. Université de Montpellier.Google Scholar
  19. [19]
    Kiraly L. (1971): Groundwater flow in heterogeneous anisotropic media. A simple two dimensional electric analog. Journal of Hydrology Vol. 12 n2 3.Google Scholar
  20. [20]
    Lomize G.M. (1951): Flow in fissured rock — (russian) — Gosenergoizdet.Google Scholar
  21. [21]
    Louis Cl. (1967): A study of groundwater flow in jointed rock and its influence on the stability of rock masses. Ph. D. thesis University of Karlsruhe English translation, Imperial College Rock Mechanics. Research Report n2 10 London Sept. 1969 (90 p.) Univ. Microfilm.Google Scholar
  22. [22]
    Louis Cl. (1968): Etude des écoulements d’eau dans les roches fissurés et de leurs influences sur la stabilité des massifs rocheux. E.D.F., Bulletin de la Direction des Etudes et Recherches, Série A Nucléaire, Hydraulique. Thermique, ri 3 (p. 5–132 ).Google Scholar
  23. [23]
    Louis Cl. (1969): Sonde hydraulique triple pour déterminer les conductivités hydrauliques directionnelles des milieux poreux ou fissurés. Rapport inédit pour dépôt de brevet. Déc. 1969.Google Scholar
  24. [24]
    Louis Cl. (1970): Hydraulic triple probe to determine the directional hydraulic conductivities of porous or jointed media. Imp. Coll., Rock Mech. Res. Rep. G.B., n22 D. 12.Google Scholar
  25. [25]
    Louis Cl. (1970): Ecoulement A trois dimensions dans les roches fissurées. Rev. Ind. Minér. Fr., ri spéc., 15 juillet 1970, pp. 73–93.Google Scholar
  26. [26]
    Louis Cl. Maini Y.N. (1970): Determination of in situ hydraulic parameters in jointed rock. Proc. 2nd Congr. int Soc. for Rock Mechanics, Belgr. Sept. 1970, T. 1, n21–32, (p. 235–245 ).Google Scholar
  27. [27]
    Louis Cl., Wittke W. (1971): Etude expérimentale des écoulements d’eau dans un massif fissuré, Tachien project, Formose. Geotechnique, 21, (p. 29–42 ).CrossRefGoogle Scholar
  28. [28]
    Louis Cl., Ricome B. (1972): Comportement hydromécanique de matériaux fissurés. Rapport B.R.G.M.Google Scholar
  29. [29]
    Louis Cl. (1972): Les drainages dans les roches fissurés. Bull. B.R.G.M. (2) III, 1.Google Scholar
  30. [30]
    Louis Cl. (1972): Les caractéristiques hydrauliques du massif de fondation du barrage de Grand Maison (Isère). Bull. B.R.G.M. 2 e série, Section III, n24, (p. 13–137 ).Google Scholar
  31. [31]
    Louis Cl., Pernot M. (1972): Analyse tridimensionelle des écoulements dans le massif de fondation du barrage de Grand Maison. Symp. of the Int. Soc. for Rock Mechanics. Stuttgart T4–F1–16.Google Scholar
  32. [32]
    Louis Cl. (1974): Hydraulique des roches. Thèse Doct. es Sc. Université de Paris.Google Scholar
  33. [33]
    Maini Y.N. (1971): In situ hydraulic parameters in jointed rock. Their measurement and interpretation. Ph. D. Thesis Imperial College London Univ. University microfilms, Pen, Bucks (G.B.).Google Scholar
  34. [34]
    Mattauer M. (1973): Les déformations des matériaux de l’écorce terrestre Herrman Paris.Google Scholar
  35. [35]
    Müller L. (1963): Der Felsbau, Bd. I Enke Verlag, Stuttgart.Google Scholar
  36. [36]
    Opsal F.W. (1955): Analysis of two and three dimensional groundwater flow by electrical analogy. Trend Engineering University, Washington.Google Scholar
  37. [37]
    Peukert D. (1969): Betrag zur Lösung von Groundwasserströmungsproblemen durch Spaltmodellversuche. Ph. D. Thesis University of Dresden.Google Scholar
  38. [38]
    Polubarinova-Kochina (1962): Theory of groundwater movement. New Jersey Princeton Uni. Press, 1962 (613 p.).Google Scholar
  39. [39]
    Prevosteau J.M. (1971): Analyse quantitative physique et géométrique de l’espace poreux des matériaux. Application aux roches grésseuses. Thèse de doctorat 3ème cycle. Université Orléan. 1971.Google Scholar
  40. [40]
    Price N.J. (1966): Fault and joint development in brittle and semibrittle rock Pergamon Press.Google Scholar
  41. [41]
    Rayneau Cl. (1972): Contribution à l’étude des écoulements autour d’un forage en milieu fissuré. Thèse Ing. Doct. Université de Montpellier.Google Scholar
  42. [42]
    Romm J.S. (1966): Drainage properties of fissured rock. Moscou, lzdat. “Nedra” 1966 (284 p.).Google Scholar
  43. [43]
    Rushton K.R. Herbert R. (1970): Resistance network for three-dimensional unconfined groundwater problems with examples of deep well dewatering. Proc. Inst. of Civ. Eng. London., Vol. 45, March 1970 (p. 471–490 ).CrossRefGoogle Scholar
  44. [44]
    Schneebeli G. (1966): Hydraulique souterraine, Eyrolles Paris (362 p.).Google Scholar
  45. [45]
    Serafim L.J., del Campo A. (1965): Interstitial pressures on rock foundations of dams. Proc. ASCE, SM, Sept. 1965 (p. 65–85 ).Google Scholar
  46. [46]
    Serafim L.J. (1968): Influence of interstitial water on the behaviour of rock masses. Rock Mechanics in Engineering Practice. Ed. Stagg-Zinkiewicz. John Willey & Sons, London, New York, Sydney, (p. 55–97 ).Google Scholar
  47. [47]
    Sharp J.C. (1970): Fluid flow through fissured media. Ph. D. Thesis imp. Coll. London 1970.Google Scholar
  48. [48]
    Sharp J.C. (1970): Drainage characteristics of sub-surfaces galleries. 2nd Congress Int. Soc. of Rock Mechanics. Belgrad.Google Scholar
  49. [49]
    Snow D.T. (1965): A parallel plate model of fractured permeable media. Ph. D. Thesis Univ. Calif. Berkeley 330 p. Univ. Microfilms.Google Scholar
  50. [50]
    Snow D.T. (1967): Anisotropy of permeable fractured media. In hydrology and flow through media. Muskat Vol., R.J.M. De Wiest Ed., Academic Press, New York (86 p.).Google Scholar
  51. [51]
    Starr M.R., Skipp B.O., Clarke D.A. (1969): Three-dimensional analogue used for relief well design in the Mangala Dam project, Géotechnique, Vol. 19, n 1 (p. 87–100 ).CrossRefGoogle Scholar
  52. [52]
    Symposium of the International Society for Rock Mechanics and Association of Engineering Geology (1972): Percolation through fissured rock. (A collection of 36 papers) Stuttgart 18–19 Sept. 1972.Google Scholar
  53. [53]
    Wilson C.R. and Witherspoon P.A. (1970): An investigation of laminar flow in fractured porous media. Publ. n2 70–6, Universtity of California, Berkeley, Nov. 1970.Google Scholar
  54. [54]
    Whiterspoon P.A., Noorishad J. and Maini Y.N. (1972): Investigation of fluid injection in fractured rock and effect on stress distribution. Geotechnical Engineering publication.Google Scholar
  55. [55]
    Whiterspoon P.A., Neuman S.P. (1972): Finite element methods in hydrogeology, Seminar in B.R.G.M. Orléans. Rapport B.R.G.M. 72, SGN 374 AME (104 p.).Google Scholar
  56. [56]
    Withum D. (1967): Elektronische Berechnung ebener und räumlicher Sicher und Grundwasserströmungen durch bleibig berandete, inhomogene anisotrope Medien. Mitteilungen des Institutes für Wasserwirtschaft und landwirtsch. Wasserbau, T.H. Hannover, Heft 10, 1967 (p. 180–233 ).Google Scholar
  57. [57]
    Wittke W., Louis Cl. (1968): Modellversuche zur Durchströmung klüftiger Medien. Felsmechanik u. ingenieurgeol. Suppl. IV, (p. 52–78 ).Google Scholar
  58. [58]
    Wittke W., Louis Cl. (1969): Untersuchungen zur Durchströmung des Kraghammer Sattels an der Biggetalsperre nach neuentwickelten Methoden der Felshydraulik. Mitt. der Versuchsanstalt für Wasserbau und Kulturtechnik, Theodor-Rehblock-Flubaulaboratorium, Universität Karlsruhe, Heft 157, (p. 131–210 ).Google Scholar
  59. [59]
    Wittke W. (1970): Three dimensional percolation of regularly fissured rock. Proc. Symp. of open Pit Mines, Johannesb., Sept. 1970.Google Scholar
  60. [60]
    Zinkiewicz O., Cheung Y.K. (1967): The finite element method in structural and continuum mechanics. McGraw Hill, London.Google Scholar

Copyright information

© Springer-Verlag Wien 1972

Authors and Affiliations

  • C. Louis
    • 1
  1. 1.Bureau de Recherches Géologiques et MinièresService Géologique NationalOrléans CédexFrance

Personalised recommendations