Skip to main content

The Three-Body Problem

  • Conference paper
Elementary Particle Physics

Part of the book series: Acta Physica Austriaca ((FEWBODY,volume 9/1972))

Abstract

The quantum mechanical three-body problem has been studied with increasing interest in the last decade. The main progress was achieved by deriving integral equations which are not only theoretically correct, but also practically applicable. Such equations allow us in particular to investigate, besides three-body bound states, the scattering of an elementary particle from a bound two-particle system.

Lecture given at XI. Internationale Universitätswochen für Kernphysik, Schladming, February 21 – March 4, 1972.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. Formal scattering theory is explained in several well known text books. Original papers, where the single-channel case is extended to multichannel problems, are: H. Ekstein, Phys. Rev. 101, 880 (1956); Nuovo Cim. 4, 1017 (1956);

    Google Scholar 

  2. J. M. Jauch, Helv. Phys. Acta 31, 127 (1958); 31, 661 (1958).

    Google Scholar 

  3. Many general points are discussed in the article by W. Brenig and R. Haag, Fortschritte der Physik 7, 183 (1959). For further references see T. F. Jordan, J. Math. Phys. 3, 429 (1962) and the bibliography given in Ref. 18.

    Google Scholar 

  4. We assume 0a=fIpcPa(p)d3p, the momentum distribution 0a(p) being a tempered test function.

    Google Scholar 

  5. The reduced masses are u3=m1m2/(m1+m2) and M3=m3(m1+m2)/ /(m1+m2+m3).

    Google Scholar 

  6. Three-body interactions are easily incorporated in all our considerations but are left out for simplicity.

    Google Scholar 

  7. It is rather characteristic for any multichannel situation that various different channel Hamiltonians have to be introduced which implies that there does not exista single splitting of H into a “free” Hamiltonian and the interaction.

    Google Scholar 

  8. J. M. Cook, J. Math. and Phys. 36, 82 (1957); M. N. Hack, Nuovo Cim. 9, 731 (1958); 13, 231 (1959);

    Google Scholar 

  9. J. M. Jauch and I. I. Zinnes, Nuovo Cim. 11, 553 (1959).

    Article  MathSciNet  Google Scholar 

  10. Most general proofs which also include the case of singular potentials are given by J. Kupsch and W. Sandhas, Commun. Math. Phys. 2, 147 (1966);

    Google Scholar 

  11. W. Hunziker, Heiv. Phys. Acta 40, 1052 (1967).

    MathSciNet  MATH  Google Scholar 

  12. J. D. Dollard, J. Math. Phys. 5, 729 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  13. For a review see L. D. Faddeev, in Three Body Problem in Nuclear and Particle Physics, ed.: J. S. C. McKee and P. M. Rolph ( North Holland, Amsterdam, 1970 ).

    Google Scholar 

  14. This step is, of course, by no means trivial. Several careful investigations have been devoted to this point which, however, show that under suitable assumptions on the potential this procedure is justified. Hereby the gap is filled between time-dependent scattering theory and the usual formalism of the time-independent (stationary) theory. See, e.g., Ref. 18;

    Google Scholar 

  15. J.J.H.J. M. Jauch, loc. cit. (Ref. 1);

    Google Scholar 

  16. K. Hepp, Heiv. Phys. Acta 42, 425 (1969);

    MathSciNet  Google Scholar 

  17. C. Chandler and A. G. Gibson, preprint.

    Google Scholar 

  18. Here and in the following we assume c +o, without explicit notation.

    Google Scholar 

  19. L. D. Faddeev, Zh. Eksperim. i. Teor. Fiz. 39

    Google Scholar 

  20. ) (English transi.: Soviet Phys. - JETP 12, 1014 (1961)).

    Google Scholar 

  21. This difference is characteristic for all sufficiently complex situations. It becomes decisive in relativistic quantum field theory: R. Haag, Dan. Mat. Fys. Medd. 29, 12 (1955). For a review of these questions see: R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and all that ( Benjamin, New York, 1964 ).

    Google Scholar 

  22. See, in particular, H. Lehmann, K. Symanzik and W. Zimmermann, Nuovo Cim. 1, 205 (1955); 1, 425 (1955); W. Zimmermann, Nuovo Cim. 10, 597 (1958). For an application to the relativistic three-body problem see D. Z. Freedman, C. Lovelace and J. M. Namyslowski, Nuovo Cim. 43, 258 (1966).

    Google Scholar 

  23. E. O. Alt, P. Grassberger and W. Sandhas, Nucl. Phys. B2, 167 (1967).

    Article  ADS  Google Scholar 

  24. Compare also L. D. Faddeev, Mathematical Aspects of the Three-Body Problem in the Quantum Scattering Theory, Publications of the Steklov Mathematical Institute, Vol. 69 (Leningrad, 1963) (English transi.: Israel Program for Scientific Translation, Jerusalem, 1965, distributed by Oldbourne Press, London).

    Google Scholar 

  25. C. Lovelace, Phys. Rev. 135, B1225 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  26. W. Sandhas, loc. cit. (Ref. 9).

    Google Scholar 

  27. L. D. Faddeev, loc. cit. (Ref. 18).

    Google Scholar 

  28. These considerations sketch a new derivation of the unitarity relation given in Ref. 17. For a different approach see C. Lovelace, in Strong Interactions and High Energy Physics, ed.: R. G. Moorhouse (Oliver and Boyd, London, 1964). Compare also K. L. Kowalski, Phys. Rev. 188, 2235 (1969).

    Google Scholar 

  29. See in particular Ref. 18.

    Google Scholar 

  30. The mathematics needed for the following considerations is explained, e.g., in F. Riesz and B. Sz.-Nagy, Functional Analysis (Blackie, 1956 );

    Google Scholar 

  31. R. Schatten, Norm Ideals of Completely Continuous Operators ( Springer-Verlag, Berlin, 1960 );

    Book  MATH  Google Scholar 

  32. F. Smithies, Integral Equations ( Cambridge University Press, New York, 1958 );

    MATH  Google Scholar 

  33. R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience Publishers, New York, 1953 ). For further useful publications see the bibliography given in C. Lovelace, loc. cit. (Refs. 19 and 22 ).

    Google Scholar 

  34. H. Rollnik, Zeitschr. f. Physik 145, 639 (1956). An extensive application of this method is given in: M. Scadron, S. Weinberg and J. Wright, Phys. Rev. 135, B202 (1964).

    Google Scholar 

  35. A description of these ideas has been given by the author in a seminar at the Schladming winter school 1969: Acta Physica Austriaca, Suppl. VI, 454 (1969). This may be used as a first introduction to the approach explained in the following sections.

    Google Scholar 

  36. K. M. Watson, Phys. Rev. 89, 575 (1953). Compare also K. M. Watson and J. Nuttall, Topics in Several Particle Dynamics (Holden-Day, San Francisco, 1967). Another early attempt is G. V. Skornjakov and K. A. TerMartirosjan, JETP 31, 775 (1956).

    Google Scholar 

  37. R. J. Glauber, in High Energy Physics and Nuclear Structure, ed.: G. Alexander (North Holland, Amsterdam, 1967 ). Compare also the seminar by J. M. Namyslowski, given at this Schladming winter school.

    Google Scholar 

  38. Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). A list of further publications concerning separable potentials is given in footnote 28 of Ref. 19.

    Google Scholar 

  39. A. N. Mitra, Nucl. Phys. 32, 529 (1962);

    Article  MATH  Google Scholar 

  40. A. N. Mitra, Phys. Rev. 139, B1472 (1965);

    Article  ADS  Google Scholar 

  41. A. N. Mitra and V. S. Bhasin, Phys. Rev. 131, 1265 (1963);

    Article  ADS  Google Scholar 

  42. A. N. Mitra, in Advances in Nuclear Physics, ed.: M. Baranger and E. Vogt (Plenum Press, Inc., New York, 1969 ), Vol. I II.

    Google Scholar 

  43. A. G. Sitenko and V. F. Kharchenko, Nucl. Phys. 49, 15 (1963).

    Article  Google Scholar 

  44. R. D. Amado, Phys. Rev. 132, 485 (1963); 902 (1966). See also:

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 140, 81291 (1965)

    Article  ADS  Google Scholar 

  46. R. D. Amado, Annual Review of Nuclear Science 19, 635 (1969).

    Google Scholar 

  47. An example is the Zachariasen-Thirring model: F. Zachariasen, Phys. Rev. 121, 1851 (1961);

    Google Scholar 

  48. W. Thirring, Nuovo Cim. 23, 1064 (1962).

    Article  MathSciNet  Google Scholar 

  49. For a review see W. Sandhas, lecture given at the Symposium on the Nuclear Three-Body Problem and Related Topics, Budapest 1971 (preprint, to be published in the proceedings of the conference). Compare also:

    Google Scholar 

  50. E. O. Alt, seminar given at this Schladming winter school.

    Google Scholar 

  51. S. Weinberg, Phys. Rev. 130, 776 (1963); 131, 440 (1963).

    Google Scholar 

  52. K. Meetz, J. Math. Phys. 3, 690 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. In practice the ideal choice can be determined by the method of J. Wright and M. Scadron, Nuovo Cim. 34, 1571 (1964).

    Google Scholar 

  54. The only difference is that it is now the “free Green’s function”, not the “potential” which is split into separable terms and a non-separable rest (see Sec. 9). The algebra, however, is nearly the same.

    Google Scholar 

  55. Our derivation of effective two-particle equations followed Ref. 17. For other approaches see:

    Google Scholar 

  56. J. H. Sloan, Phys. Rev. 165, 1587 (1968);

    Article  ADS  Google Scholar 

  57. M. G. Fuda, Phys. Rev. 166, 1064 (1968);

    Article  ADS  Google Scholar 

  58. F. Riordan, Nuovo Cim. 54A, 552 (1968);

    Article  ADS  Google Scholar 

  59. L. Rosenberg, Phys. Rev. 168, 1756 (1968);

    Article  ADS  Google Scholar 

  60. R. Yaes, Phys. Rev. 170, 1236 (1968).

    Article  ADS  Google Scholar 

  61. Weinberg himself proposed a generalization of the quasi particle concept to the three-body (and even to the n-body) case: Phys. Rev. 133, B232 (1964).

    Google Scholar 

  62. Being applied, however, to the whole kernel instead of the subsystem operators only, this method is completely different from the one developed in Ref. 17 and described in this lecture. In practice Weinberg’s approach seems to be too complicated.

    Google Scholar 

  63. E. O. Alt, P. Grassberger and W. Sandhas, Nucl. Phys. A139, 209 (1969);

    Article  Google Scholar 

  64. V. Vanzani, Nuovo Cim. Lett. 2, 706 (1969).

    Article  Google Scholar 

  65. P. Grassberger and W. Sandhas, Zeitschr. f. Physik 220, 29 (1969).

    Article  ADS  MATH  Google Scholar 

  66. E. O. Alt, P. Grassberger and W. Sandhas, Phys. Rev. D1, 2581 (1970), Appendix C.

    Google Scholar 

  67. W. Sandhas, loc. cit. (Ref. 9);

    Google Scholar 

  68. P. Grassberger and W. Sandhas,Zeitschr. f. Physik 217, 9 (1968).

    Article  Google Scholar 

  69. Compare in particular R. Haag, Phys. Rev. 112, 669 (1958). Nonrelativistic composite particle fields are studied in strict analogy to this approach in

    Google Scholar 

  70. W. Sandhas, Commun. Math. Phys. 3, 358 (1966).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. This is discussed in detail by W. Sandhas, loc. cit. (Ref. 9). Here also the relation to the “weak convergence method” of axiomatic field theory (see Ref. 43) is established.

    Google Scholar 

  72. In this way also a treatment of the four-(and even of the n-) body problem becomes possible, without starting from four-body integral equations with connected kernels. Incorporating step by step the dominant two-and three-body subsystem properties, by means of separable terms, we directly arrive at effective two-particle equations also in the four-body case: P. Grassberger and W. Sandhas, Nucl. Phys. B2, 181 (1967); Zeitschr. f. Physik 217, 9 (1968). Practical applications of this approach are given in E. O. Alt, P. Grassberger and W. Sandhas, Phys. Rev. Cl, 85 (1970). For a short description see Ref. 26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag Wien

About this paper

Cite this paper

Sandhas, W. (1972). The Three-Body Problem. In: Urban, P. (eds) Elementary Particle Physics. Acta Physica Austriaca, vol 9/1972. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4034-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4034-5_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4036-9

  • Online ISBN: 978-3-7091-4034-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics