Advertisement

Low Energy Aspects of Broken Scale Invariance

  • H. Kleinert
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 9/1972)

Abstract

The observation of the scaling properties of the structure functions W1 and vW2 of deep inelastic electron nucleon scattering [1]+ has been taken by many people as an indication for an approximate scale invariance of the world.It was pointed out by Wilson [2], that in many field theories it is possible to assign a dimension d to every fundamental field, which proves to be a conserved quantum number as far as the most singular term of an operator product expansion at small distances ((x−y)μ →o) is concerned++. Later it was shown, at the canonical level, that in many field theories the dimension of a field seems to be a good quantum number even in the terms less singular at small (x−y)μ, as long as they all belong to the strongest light cone singularity (i.e. (x−y)2→o) [3].

Keywords

Scale Invariance Ward Identity Energy Momentum Tensor Current Algebra Pion Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. D. Bloom et al., SLAC-PUB-796, Report presented at the XV International Conference on High Energy Physics, Kiev, USSR, 1970;Google Scholar
  2. M. Kendall et al., Report presented at the Cornell Meeting on Electromagnetic Interactions.Google Scholar
  3. 2.
    K. Wilson, Phys. Rev. 179, 1499 (1969).MathSciNetADSCrossRefGoogle Scholar
  4. 3.
    R. Brandt and G. Preparata, Ann.of Phys. 61, 119 (1970).ADSCrossRefGoogle Scholar
  5. 4.
    E.D.Bloom and F.J.Gilman,Phys.Rev.Letters 25,1140 (1970);ADSCrossRefGoogle Scholar
  6. V.Rittenberg and H.R.Rubinstein,Physics Lett.35B,50(1971).ADSGoogle Scholar
  7. 5.
    J.D. Bjorken and E.A. Paschos, Phys.Rev. 185, 1975 (1969);ADSCrossRefGoogle Scholar
  8. S. D. Drell and T.M.Yan, Phys.Rev.Letters 24, 191 (1970).ADSGoogle Scholar
  9. 6.
    H. Kleinert, Berlin Preprint, Nov. 1971;Google Scholar
  10. A. F. Grillo and H. Kleinert, Berlin Preprint, Dec. 1971.Google Scholar
  11. 7.
    H. J. Schnitzer and S.Weinberg,Phys.Rev. 164, 1824 (1968).Google Scholar
  12. 8.
    B. Zumino, Brandeis Summer Institute Notes (1970).Google Scholar
  13. 9.
    J. L. Petersen and J. Pisút, CERN Preprint; see also the reviews by: D. Morgan and J. Pisút, Springer Tracts in Modern Physics 55, 1 (1970);CrossRefGoogle Scholar
  14. J. L. Petersen, Phys. Reports 2C, 155 (1971).ADSCrossRefGoogle Scholar
  15. 10.
    D. Morgan and G. Shaw, Nuclear Phys. B10, 261 (1969);ADSCrossRefGoogle Scholar
  16. D. Morgan and G. Shaw, Phys. Rev. D2, 520 (1970).ADSGoogle Scholar
  17. 11.
    J. Engels, Nucl. Phys. B25, 141 (1970).ADSCrossRefGoogle Scholar
  18. 12.
    G. Ebel et al., Compilation of Coupling Constants, Springer Tracts in Modern Physics 55, 239 (1970).ADSCrossRefGoogle Scholar
  19. 13.
    J. C. LeGuillou, A. Morel and H. Navelet, Nuovo Cimento 5A, 659 (1971).ADSCrossRefGoogle Scholar
  20. 14.
    M. Gell-Mann and M. Levy, Nuovo Cimento 16, 53 (1960).MathSciNetGoogle Scholar
  21. 15.
    H. Kleinert, L. Staunton and P. H. Weisz, CERN Preprint TH. 1352.Google Scholar
  22. 16.
    B. Schrempp-Otto, F. Schrempp, and T. F. Walsh, DESY Preprint, 1971.Google Scholar
  23. 17.
    J. Baacke, T. H. Chang and H. Kleinert, Berlin Preprint, Nov. 1971.Google Scholar
  24. 18.
    H. Kleinert and P. H. Weisz, Nuclear Phys. B27, 23 (1971).ADSCrossRefGoogle Scholar
  25. 19.
    H. Kleinert and P. H. Weisz, unpublished.Google Scholar
  26. 20.
    S. Fubini and G. Furlan, Ann. Phys. (N. Y.) 48, 322 (1968);ADSCrossRefGoogle Scholar
  27. see also A’. de Alfaro and C. Rosetti, Nuovo Cimento Suppl. 6, 575 (1968).Google Scholar
  28. 21.
    F. von Hippel and J. K. Kim, Phys. Rev. Letters 22, 140 (1969);Google Scholar
  29. F. von Hippel and J. K. Kim, Phys. Rev. D1, 151 (1970).Google Scholar
  30. 22.
    P. Gensini, Univ. of Lecce preprint (1970);Google Scholar
  31. M. Ericson and M. Rho, CERN preprint TH. 1350.Google Scholar
  32. 23.
    H. Kleinert, F. Steiner, and P. H. Weisz, Phys. Letters 34B, 312 (1971).ADSGoogle Scholar
  33. 24.
    T. P. Cheng and R. F. Dashen, Phys. Rev. Letters 26, 594 (1971).ADSCrossRefGoogle Scholar
  34. 25.
    G. Höhler, H. G. Schlaile and R. Strauß, Z. Phys. 229, 217 (1969).ADSCrossRefGoogle Scholar
  35. 26.
    G. Höhler, H. P. Jacob and R. Strauß, Phys. Lett. 35B, 445 (1971).CrossRefGoogle Scholar
  36. 27.
    H. Nielsen, Nucl. Phys. B30, 317 (1971).ADSCrossRefGoogle Scholar
  37. 28.
    G. Altarelli, N. Cabibbo and L. Maiani, Phys. Lett. 35B, 415 (1971).CrossRefGoogle Scholar
  38. 29.
    M. Gell-Mann, Lecture Notes, Hawaii Summer School (1969).Google Scholar
  39. 30.
    M. Gell-Mann, R. J. Oakes and B. Renner, Phys. Rev. 175, 2195 (1968).ADSCrossRefGoogle Scholar
  40. 31.
    H. Fritzsch, M. Gell-Mann, Talk presented at the Coral Gables Conference on Fundamental Interactions, January 1971. Caltech Preprint 68–297.Google Scholar
  41. 32.
    H. Kleinert and P. H. Weisz, Nuovo Cimento 3A, 479 (1971).ADSCrossRefGoogle Scholar
  42. 33.
    P. Carruthers, Phys. Rev. D2, 2265 (1970).ADSGoogle Scholar
  43. 34.
    B. Renner, DESY Preprint 71/42.Google Scholar
  44. 35.
    R. J. Crewther, Phys. Rev. D3, 3163 (1971);Google Scholar
  45. R. J. Crewther, Phys. Letters 33B, 305 (1970).ADSGoogle Scholar
  46. 36.
    C. R. Callan, S. Coleman, R. Jackiw, Ann. Phys. (N. Y.) 59, 42 (1970);MathSciNetADSMATHCrossRefGoogle Scholar
  47. S. Coleman and R. Jackiw, Ann. Phys. (N. Y.)(to be published).Google Scholar
  48. 37.
    F. J. Belinfante, Physica 7, 449 (1940).MathSciNetADSCrossRefGoogle Scholar
  49. 38.
    J. M. Jauch and F. Rohrlich, “The Theory of Photons and Electrons”, Addison-Wesley (1955).Google Scholar
  50. 39.
    H. Gyorgi, Yale preprint (1970);Google Scholar
  51. J. Katz, Phys. Rev. D4, 1885 (1971);ADSGoogle Scholar
  52. Y. Fujii, Tokyo preprints (1970) and (1971);Google Scholar
  53. C. P. Altes Korthals, Oxford preprint (1971).Google Scholar
  54. 40.
    J. Ellis, Nucl. Phys. B22, 478 (1970);ADSCrossRefGoogle Scholar
  55. J. Ellis, erratum, ibid. B25, 639 (1971);Google Scholar
  56. A. Salam and J. Strathdee, Phys. Rev. 184, 1760 (1969).MathSciNetADSCrossRefGoogle Scholar
  57. 41.
    J. Honerkamp, Nuovo Cimento 66A, 767 (1970).MathSciNetADSCrossRefGoogle Scholar
  58. J. Ellis, Phys. Letters 33B, 591 (1970),Eq. (7).Google Scholar
  59. 43.
    H. Kleinert and P. H. Weisz, Lett. Nuovo Cimento 4, 1091 (1970);CrossRefGoogle Scholar
  60. H. Kleinert, L. Staunton, and P. H. Weisz, CERN preprint TH. 1325 (1971).Google Scholar
  61. 44.
    S. Gasiorowicz and D. A. Geffen, Rev. Mod. Phys. 41, 531 (1969).MathSciNetADSCrossRefGoogle Scholar
  62. 45.
    F. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968).ADSCrossRefGoogle Scholar
  63. 46.
    J. Hallam et al., Phys. Rev. D1, 94 (1970).Google Scholar
  64. 47.
    F. Buccella, H. Kleinert, C. Savoy, E. Celeghini, E. Sorace, Nuovo Cimento 69A, 133 (1970).ADSCrossRefGoogle Scholar
  65. 48.
    H. Kleinert, L. Staunton, and P. H. Weisz, CERN Preprint TH. 1352.Google Scholar
  66. 49.
    N. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157, 1376 (1967).ADSCrossRefGoogle Scholar
  67. 50.
    M. J. Creutz and M. B. Einhorn, Phys. Rev. Letters 24, 341 (1970)ADSCrossRefGoogle Scholar
  68. M. J. Creutz and M. B. Einhorn, Phys. Rev. Dl, 2537 (1970).Google Scholar
  69. 51.
    H. Genz and J. Katz, Nuovo Cimento Lettere 4, 1091 (1970)CrossRefGoogle Scholar
  70. H. Genz and J. Katz, Phys. Rev. D3, 1860 (1971).ADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 1972

Authors and Affiliations

  • H. Kleinert
    • 1
  1. 1.Institut für Theoretische PhysikFreie Universität BerlinGermany

Personalised recommendations