Skip to main content

Survey of High Energy Inelastic Models and Kinematical Constraints for Inclusive Processes

  • Conference paper
Elementary Particle Physics

Part of the book series: Acta Physica Austriaca ((FEWBODY,volume 9/1972))

  • 188 Accesses

Abstract

As it is well known, the field of very high energy collisions of hadrons is dominated by the so-called inelastic processes. With increasing energy, more and more channelsopen; at present accelerator energies, at least 70–80% of the whole reaction can be attributed to inelastic processes and the unitarity condition assures us that even the elastic scattering is the shadow effect of the inelastic processes. It is, therefore, essential to understand the mechanism by which there inelastic processe (nowadays referred to also as “exclusive processes”)

$$a + b \to 1 + 2... + n$$
(1.1)

proceed both in order to explain the experimentalfindings as well as to give an answer to many theoretical questions such as “what is, exactly, the Pomeron?” (or, equivalently, “what is diffraction?”), “what is a Regge pole?”, “what is the mechanism responsible for the large angle elastic scattering?” “can the manybody processes be simulated by sequences of two-step processes: a+b colliding give one or more excited states which subsequently decay into many particles?” and, in this case, ”what are the underlying dynamical mechanisms responsible for these two-step processes?” “does duality hold?“(i.e., can the above two-step process occur both if the collision is viewed as a direct (s) channel effect or as a crossed channel effect?) and, “o what extent does duality hold?”; “what is the origin of diffraction dissociation and of the so-called D-resonances?”, “how does one account for i) energy dependence, ii) angular distributions, iii) mass distribution, iv) multiplicities etc., of the exclusive processes?”, “what is the dynamical origin of the experimental damping in the transverse momenta?”; “how can one reconcile the present accelerator data with the (largely ignored) data on cosmic rays such as those found by the brazilian-japanese collaboration?”; on an even more fundamental ground: “what is the origin of a resonance and what is exactly a resonance?”; “ow do the various conservation laws play their role?” and “ow can unitarity be enforced and what is (if it exists) its relationship with crossing (suggested by duality)?”

Lecture given at XI. Internationale Universitätswochen für Kernphysik, Schladming, February 21 – March 4, 1972.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Fermi, Progr. Theor. Phys. 5, 570 (1950);

    Google Scholar 

  2. E. Fermi, Phys. Rev. 81, 683 (1951).

    Article  ADS  MATH  Google Scholar 

  3. R. Hagedorn, Nuovo Cimento 56A, 1027 (1968).

    Article  ADS  Google Scholar 

  4. G. Cocconi, Phys. Rev. 111, 1699 (1958).

    Article  ADS  Google Scholar 

  5. K. Fujiwara and T. Kitazoe, Progr. Theor. Phys. 43, 1204 (1971);

    Google Scholar 

  6. A. Giovannini, Nuovo Cimento 2A, 209 (1971).

    Article  ADS  Google Scholar 

  7. L. Hove, Rev. Mod. Physics 36, 655 (1964).

    Article  ADS  Google Scholar 

  8. F. Lurçat and P. Mazur, Nuovo Cimento 31, 140 (1964).

    Article  Google Scholar 

  9. E. H. De Groot and T. Ruijgrok, Nucl. Phys. B27, 45 (1971).

    Article  ADS  Google Scholar 

  10. E.Predazzi, Nuovo Cimento 48, 1014 (1967).

    Article  ADS  Google Scholar 

  11. L. Bertocchi, S. Fubini and M. Tonin, Nuovo Cimento 25, 626 (1962);

    Article  MATH  Google Scholar 

  12. D. Amati, S. Fubini and A. Stanghellini, Nuovo Cimento 26, 896 (1962).

    Article  Google Scholar 

  13. G. F. Chew and R. Pignotti, Phys. Rev. 176, 2112 (1968).

    Article  ADS  Google Scholar 

  14. A. Ballestrero, A. Giovannini, R. Nulman and E. Predazzi, Nuovo Cimento SA, 197 (1971).

    Google Scholar 

  15. Y. Hama, Diffractive Dissociation of Particles Through Collective Excitation; Univ. Torino preprint (1971).

    Google Scholar 

  16. C. E. De Tar, D. Z. Freedman and G. Veneziano, Phys. Rev. D4, 906 (1971).

    Google Scholar 

  17. E. Predazzi and G. Veneziano, Lettere al Nuovo Cimento Vol. 2, 749 (1971).

    Article  Google Scholar 

  18. A. Ballestrero, R. Nulman and E. Predazzi, General Properties of Correlation Functions for Inclusive Processes; preprint Univ. of Torino (1971). To be published in Nuovo Cimento.

    Google Scholar 

  19. R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969).

    Article  Google Scholar 

  20. J. Benecke, T. T. Chou, C. N. Yang and E. Yen, Phys. Rev. 188, 2159 (1969).

    Article  ADS  Google Scholar 

  21. L. Hove, Phys. Lett. 28B, 429 (1969);

    Google Scholar 

  22. L. Hove, Nucl. Phys. B9, 331 (1969);

    Article  ADS  Google Scholar 

  23. W. Kittel, S. Ratti and L. Van Hove, Nucl. Phys. B30, 333 (1971).

    Article  ADS  Google Scholar 

  24. D. Amati, M. Cini and A. Stanghellini, Nuovo Cimento 30, 193 (1963).

    Article  Google Scholar 

  25. E. Predazzi, Annals of Physics 36, 228, 250 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  26. G. Molière, Z. Naturforsch. 2A, 133 (1947).

    Google Scholar 

  27. R. Glauber, Lectures in Theoretical Physics p. 315. Interscience N. Y. 1958.

    Google Scholar 

  28. T. T. Chou and C. N. Yang, Phys. Rev. 170, 1591 (1968).

    Article  ADS  Google Scholar 

  29. See, for instance, M. M. Islam, Lectures in Theoretical Physics, Edited by A. 0. Barut and W. E. Brittin (Gordon and Breach, 1968 ), Vol. X B, p. 97.

    Google Scholar 

  30. F. Zachariasen, CERN report Th. 1284 (1971).

    Google Scholar 

  31. R. Hagedorn, Supplemento al Nuovo Cimento 3, 147 (1965).

    Google Scholar 

  32. S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969).

    Article  ADS  Google Scholar 

  33. See, for instance, R. Hagedorn and J. Ranft, Supplemento al Nuovo Cimento 6, 169 (1968), and G. Ranft and J. Ranft: Lectures delivered at the Symposium on High Energy Physics, Kuhlungoborn, DDR, 1970, preprint TUL 41 of the K. Marx Universität (1970) and the literature quoted in these papers.

    Google Scholar 

  34. V. S. Barashenkov, V. M. Maltsev, I. Patara and V. D. Taneev, P-2393 (Dubna 1965 ).

    Google Scholar 

  35. R. J. Sprafka, J. A. Anderson, C. I. Dahl, J. H. Friedman, J. Kirz, M. A. Wahlig, L. H. Schmidt and T. B. Day, UCRL 17366 (1967).

    Google Scholar 

  36. L. W. Jones et al., UM HE 70–15 (1970).

    Google Scholar 

  37. R. Hagedorn, CERN Th. 1174 (1970). Invited paper at the “Colloquium on High Multiplicity Hadronic Interactions” Paris 1970.

    Google Scholar 

  38. R. Nulman and E. Predazzi, to be published.

    Google Scholar 

  39. L. Micheida, Fortschr. Phys. 16, 707 (1968).

    Article  Google Scholar 

  40. L. Hove and Zalewski, Nuovo Cimento 46, 806 (1966).

    Article  ADS  Google Scholar 

  41. A. Bassetto, L. Sertorio and M. Toller: CERN report Th. 1326 (1971).

    Google Scholar 

  42. D. Amati, S. Fubini and A. Stanghellini, Phys. Lett. 1, 29 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  43. See, for instance, Gell-Mann et al., Phys. Rev. 133B, 145 and 161 (1964).

    Google Scholar 

  44. L. Bertocchi, E. Predazzi, A. Stanghellini and M. Tonin, Nuovo Cimento 27, 913 (1963).

    Article  Google Scholar 

  45. N. Bali, G. F. Chew and R. Pignotti, Phys. Rev. Lett. 19, 614 (1967).

    Article  ADS  Google Scholar 

  46. J. Schwinger in Quantum Theory of Angular Momentum, edited by L. C. Biedenharn and H. Van Dam (New York, 1965 ) p. 229.

    Google Scholar 

  47. L. C. Biedenharn and J. W. Holman, Ann. of Phys. 39, 1 (1966).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. V. Bargmann, Ann. of Math. 48, 568 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Yamada and M. Koshiba, Phys. Rev. 157, 1279 (1967).

    Article  ADS  Google Scholar 

  50. W. Furry, Phys. Rev. 52, 569 (1937).

    Article  ADS  MATH  Google Scholar 

  51. C. Tar, Phys. Rev. D3, 128 (1971).

    Article  Google Scholar 

  52. A. Giovannini, Contribution to the Colloquium on Multi-particle Dynamics (Helsinki, 1971 ).

    Google Scholar 

  53. A. Giovannini, On a Statistical Generalization of the Multiperipheral Bootstrap; Univ. of Torino preprint (1971).

    Google Scholar 

  54. A. Martin, Nuovo Cimento 29, 993 (1963).

    Article  Google Scholar 

  55. G. Polya, Ann. Inst. H. Poincaré I, 117 (1930).

    MathSciNet  Google Scholar 

  56. A. H. Mueller, Phys. Rev. D2, 2963 (1970).

    ADS  Google Scholar 

  57. Chan Hong-Mo, C. S. Hsue, C. Quigg and Jiunn-Ming Wang, Phys. Rev. Letters 26, 672 (1971).

    Article  ADS  Google Scholar 

  58. J. Ellis, J. Finkelstein, P. H. Frampton and M. Jacob, Phys. Lett. 35B, 227 (1971).

    Google Scholar 

  59. See, for instance, E. L. Berger, Proceedings of the Colloquium on Multiparticle Dynamics (Helsinki 1971) and ANL/HEP 7134.

    Google Scholar 

  60. S. H. H. Tye, Sum Rules for Correlation Functions in Inclusive Reactions; M. I. T. preprint (1971).

    Google Scholar 

  61. A. H. Mueller, BNL preprint 15706 (1971).

    Google Scholar 

  62. L. Brown, Imperial College preprint (1971).

    Google Scholar 

  63. L. Hove, Proceedings of the Colloquium on Multi-particle Dynamics (Helsinki 1971) and CERN preprint Th. 1365; see also, of the same author, Physics Reports 1C, 347 (1971).

    Article  ADS  Google Scholar 

  64. Z. Koba, H. B. Nielsen and P. Olesen, Generating Functionals for Multiple Particle Production; Niels Bohr Institute preprint NBI-HE-71–7 (1971).

    Google Scholar 

  65. A. Ballestrero, unpublished. We are grateful to Dr. Ballestrero for pointing this out to us.

    Google Scholar 

  66. G. Veneziano, CERN preprint Th. 1379 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag Wien

About this paper

Cite this paper

Predazzi, E. (1972). Survey of High Energy Inelastic Models and Kinematical Constraints for Inclusive Processes. In: Urban, P. (eds) Elementary Particle Physics. Acta Physica Austriaca, vol 9/1972. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4034-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4034-5_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4036-9

  • Online ISBN: 978-3-7091-4034-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics