Survey of High Energy Inelastic Models and Kinematical Constraints for Inclusive Processes

  • E. Predazzi
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 9/1972)


As it is well known, the field of very high energy collisions of hadrons is dominated by the so-called inelastic processes. With increasing energy, more and more channelsopen; at present accelerator energies, at least 70–80% of the whole reaction can be attributed to inelastic processes and the unitarity condition assures us that even the elastic scattering is the shadow effect of the inelastic processes. It is, therefore, essential to understand the mechanism by which there inelastic processe (nowadays referred to also as “exclusive processes”)
$$a + b \to 1 + 2... + n$$
proceed both in order to explain the experimentalfindings as well as to give an answer to many theoretical questions such as “what is, exactly, the Pomeron?” (or, equivalently, “what is diffraction?”), “what is a Regge pole?”, “what is the mechanism responsible for the large angle elastic scattering?” “can the manybody processes be simulated by sequences of two-step processes: a+b colliding give one or more excited states which subsequently decay into many particles?” and, in this case, ”what are the underlying dynamical mechanisms responsible for these two-step processes?” “does duality hold?“(i.e., can the above two-step process occur both if the collision is viewed as a direct (s) channel effect or as a crossed channel effect?) and, “o what extent does duality hold?”; “what is the origin of diffraction dissociation and of the so-called D-resonances?”, “how does one account for i) energy dependence, ii) angular distributions, iii) mass distribution, iv) multiplicities etc., of the exclusive processes?”, “what is the dynamical origin of the experimental damping in the transverse momenta?”; “how can one reconcile the present accelerator data with the (largely ignored) data on cosmic rays such as those found by the brazilian-japanese collaboration?”; on an even more fundamental ground: “what is the origin of a resonance and what is exactly a resonance?”; “ow do the various conservation laws play their role?” and “ow can unitarity be enforced and what is (if it exists) its relationship with crossing (suggested by duality)?”


Correlation Function Transverse Momentum Total Cross Section Production Cross Section Partial Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fermi, Progr. Theor. Phys. 5, 570 (1950);Google Scholar
  2. E. Fermi, Phys. Rev. 81, 683 (1951).ADSMATHCrossRefGoogle Scholar
  3. 2.
    R. Hagedorn, Nuovo Cimento 56A, 1027 (1968).ADSCrossRefGoogle Scholar
  4. 3.
    G. Cocconi, Phys. Rev. 111, 1699 (1958).ADSCrossRefGoogle Scholar
  5. 4.
    K. Fujiwara and T. Kitazoe, Progr. Theor. Phys. 43, 1204 (1971);Google Scholar
  6. A. Giovannini, Nuovo Cimento 2A, 209 (1971).ADSCrossRefGoogle Scholar
  7. 5.
    L. Hove, Rev. Mod. Physics 36, 655 (1964).ADSCrossRefGoogle Scholar
  8. 6.
    F. Lurçat and P. Mazur, Nuovo Cimento 31, 140 (1964).CrossRefGoogle Scholar
  9. 7.
    E. H. De Groot and T. Ruijgrok, Nucl. Phys. B27, 45 (1971).ADSCrossRefGoogle Scholar
  10. 8.
    E.Predazzi, Nuovo Cimento 48, 1014 (1967).ADSCrossRefGoogle Scholar
  11. 9.
    L. Bertocchi, S. Fubini and M. Tonin, Nuovo Cimento 25, 626 (1962);MATHCrossRefGoogle Scholar
  12. D. Amati, S. Fubini and A. Stanghellini, Nuovo Cimento 26, 896 (1962).CrossRefGoogle Scholar
  13. 10.
    G. F. Chew and R. Pignotti, Phys. Rev. 176, 2112 (1968).ADSCrossRefGoogle Scholar
  14. 11.
    A. Ballestrero, A. Giovannini, R. Nulman and E. Predazzi, Nuovo Cimento SA, 197 (1971).Google Scholar
  15. 12.
    Y. Hama, Diffractive Dissociation of Particles Through Collective Excitation; Univ. Torino preprint (1971).Google Scholar
  16. 13.
    C. E. De Tar, D. Z. Freedman and G. Veneziano, Phys. Rev. D4, 906 (1971).Google Scholar
  17. 14.
    E. Predazzi and G. Veneziano, Lettere al Nuovo Cimento Vol. 2, 749 (1971).CrossRefGoogle Scholar
  18. 15.
    A. Ballestrero, R. Nulman and E. Predazzi, General Properties of Correlation Functions for Inclusive Processes; preprint Univ. of Torino (1971). To be published in Nuovo Cimento.Google Scholar
  19. 16.
    R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969).CrossRefGoogle Scholar
  20. 17.
    J. Benecke, T. T. Chou, C. N. Yang and E. Yen, Phys. Rev. 188, 2159 (1969).ADSCrossRefGoogle Scholar
  21. 18.
    L. Hove, Phys. Lett. 28B, 429 (1969);Google Scholar
  22. L. Hove, Nucl. Phys. B9, 331 (1969);ADSCrossRefGoogle Scholar
  23. W. Kittel, S. Ratti and L. Van Hove, Nucl. Phys. B30, 333 (1971).ADSCrossRefGoogle Scholar
  24. 19.
    D. Amati, M. Cini and A. Stanghellini, Nuovo Cimento 30, 193 (1963).CrossRefGoogle Scholar
  25. 20.
    E. Predazzi, Annals of Physics 36, 228, 250 (1966).MathSciNetADSCrossRefGoogle Scholar
  26. 21.
    G. Molière, Z. Naturforsch. 2A, 133 (1947).Google Scholar
  27. 22.
    R. Glauber, Lectures in Theoretical Physics p. 315. Interscience N. Y. 1958.Google Scholar
  28. 23.
    T. T. Chou and C. N. Yang, Phys. Rev. 170, 1591 (1968).ADSCrossRefGoogle Scholar
  29. 24.
    See, for instance, M. M. Islam, Lectures in Theoretical Physics, Edited by A. 0. Barut and W. E. Brittin (Gordon and Breach, 1968 ), Vol. X B, p. 97.Google Scholar
  30. 25.
    F. Zachariasen, CERN report Th. 1284 (1971).Google Scholar
  31. 26.
    R. Hagedorn, Supplemento al Nuovo Cimento 3, 147 (1965).Google Scholar
  32. 27.
    S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969).ADSCrossRefGoogle Scholar
  33. 28.
    See, for instance, R. Hagedorn and J. Ranft, Supplemento al Nuovo Cimento 6, 169 (1968), and G. Ranft and J. Ranft: Lectures delivered at the Symposium on High Energy Physics, Kuhlungoborn, DDR, 1970, preprint TUL 41 of the K. Marx Universität (1970) and the literature quoted in these papers.Google Scholar
  34. 29.
    V. S. Barashenkov, V. M. Maltsev, I. Patara and V. D. Taneev, P-2393 (Dubna 1965 ).Google Scholar
  35. 30.
    R. J. Sprafka, J. A. Anderson, C. I. Dahl, J. H. Friedman, J. Kirz, M. A. Wahlig, L. H. Schmidt and T. B. Day, UCRL 17366 (1967).Google Scholar
  36. 31.
    L. W. Jones et al., UM HE 70–15 (1970).Google Scholar
  37. 32.
    R. Hagedorn, CERN Th. 1174 (1970). Invited paper at the “Colloquium on High Multiplicity Hadronic Interactions” Paris 1970.Google Scholar
  38. 33.
    R. Nulman and E. Predazzi, to be published.Google Scholar
  39. 34.
    L. Micheida, Fortschr. Phys. 16, 707 (1968).CrossRefGoogle Scholar
  40. 35.
    L. Hove and Zalewski, Nuovo Cimento 46, 806 (1966).ADSCrossRefGoogle Scholar
  41. 36.
    A. Bassetto, L. Sertorio and M. Toller: CERN report Th. 1326 (1971).Google Scholar
  42. 37.
    D. Amati, S. Fubini and A. Stanghellini, Phys. Lett. 1, 29 (1962).MathSciNetADSCrossRefGoogle Scholar
  43. 38.
    See, for instance, Gell-Mann et al., Phys. Rev. 133B, 145 and 161 (1964).Google Scholar
  44. 39.
    L. Bertocchi, E. Predazzi, A. Stanghellini and M. Tonin, Nuovo Cimento 27, 913 (1963).CrossRefGoogle Scholar
  45. 40.
    N. Bali, G. F. Chew and R. Pignotti, Phys. Rev. Lett. 19, 614 (1967).ADSCrossRefGoogle Scholar
  46. 41.
    J. Schwinger in Quantum Theory of Angular Momentum, edited by L. C. Biedenharn and H. Van Dam (New York, 1965 ) p. 229.Google Scholar
  47. 42.
    L. C. Biedenharn and J. W. Holman, Ann. of Phys. 39, 1 (1966).MathSciNetADSMATHCrossRefGoogle Scholar
  48. 43.
    V. Bargmann, Ann. of Math. 48, 568 (1947).MathSciNetMATHCrossRefGoogle Scholar
  49. 44.
    S. Yamada and M. Koshiba, Phys. Rev. 157, 1279 (1967).ADSCrossRefGoogle Scholar
  50. 45.
    W. Furry, Phys. Rev. 52, 569 (1937).ADSMATHCrossRefGoogle Scholar
  51. 46.
    C. Tar, Phys. Rev. D3, 128 (1971).CrossRefGoogle Scholar
  52. 47.
    A. Giovannini, Contribution to the Colloquium on Multi-particle Dynamics (Helsinki, 1971 ).Google Scholar
  53. 48.
    A. Giovannini, On a Statistical Generalization of the Multiperipheral Bootstrap; Univ. of Torino preprint (1971).Google Scholar
  54. 49.
    A. Martin, Nuovo Cimento 29, 993 (1963).CrossRefGoogle Scholar
  55. 50.
    G. Polya, Ann. Inst. H. Poincaré I, 117 (1930).MathSciNetGoogle Scholar
  56. 51.
    A. H. Mueller, Phys. Rev. D2, 2963 (1970).ADSGoogle Scholar
  57. 52.
    Chan Hong-Mo, C. S. Hsue, C. Quigg and Jiunn-Ming Wang, Phys. Rev. Letters 26, 672 (1971).ADSCrossRefGoogle Scholar
  58. 53.
    J. Ellis, J. Finkelstein, P. H. Frampton and M. Jacob, Phys. Lett. 35B, 227 (1971).Google Scholar
  59. 54.
    See, for instance, E. L. Berger, Proceedings of the Colloquium on Multiparticle Dynamics (Helsinki 1971) and ANL/HEP 7134.Google Scholar
  60. 55.
    S. H. H. Tye, Sum Rules for Correlation Functions in Inclusive Reactions; M. I. T. preprint (1971).Google Scholar
  61. 56.
    A. H. Mueller, BNL preprint 15706 (1971).Google Scholar
  62. 57.
    L. Brown, Imperial College preprint (1971).Google Scholar
  63. 58.
    L. Hove, Proceedings of the Colloquium on Multi-particle Dynamics (Helsinki 1971) and CERN preprint Th. 1365; see also, of the same author, Physics Reports 1C, 347 (1971).ADSCrossRefGoogle Scholar
  64. 59.
    Z. Koba, H. B. Nielsen and P. Olesen, Generating Functionals for Multiple Particle Production; Niels Bohr Institute preprint NBI-HE-71–7 (1971).Google Scholar
  65. 60.
    A. Ballestrero, unpublished. We are grateful to Dr. Ballestrero for pointing this out to us.Google Scholar
  66. 61.
    G. Veneziano, CERN preprint Th. 1379 (1971).Google Scholar

Copyright information

© Springer-Verlag Wien 1972

Authors and Affiliations

  • E. Predazzi
    • 1
    • 2
  1. 1.Istituto di FisicaUniversità TorinoItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di TorinoItaly

Personalised recommendations