Nonstandard Weak Bosons

  • J. J. Sakurai
Conference paper
Part of the Acta Physica Austriaca Supplementum XXIV book series (FEWBODY, volume 24/1982)


All the low-energy successes of the standard electroweak gauge model are shown to follow in a more phenomenological model based on global SU(2) broken by γ-W° mixing. Weinberg’s mass predictions need not be valid. Connections with recent composite models of W and Z are also discussed.


Vector Meson Neutral Current Charge Radius Mass Formula Unification Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.L. Glashow, Nucl.Phys. 22, (1961) 579.CrossRefGoogle Scholar
  2. 2.
    A. Salam and J.C. Ward, Phys. Lett. 13 (1964) 168;MathSciNetADSMATHCrossRefGoogle Scholar
  3. 2a.
    A. Salam, Elementary Particle Theory, ed. N. Svartholm (Almquist and Wiksell, Stockholm, 1968), p. 367.Google Scholar
  4. 3.
    S. Weinberg, Phys. Rev. Lett. 19, (1967) 1264.ADSCrossRefGoogle Scholar
  5. 4.
    or a review see e.g. J.E. Kim, P. Langacker, M. Levine and H.H. Williams, Rev. Mod. Phys. 53, (1981) 211;ADSCrossRefGoogle Scholar
  6. 4a.
    P.Q. Hung and J.J. Sakurai, Ann. Revs. Nucl. Sci. 31, (1981) 375.ADSCrossRefGoogle Scholar
  7. 5.
    W.J. Marciano and A. Sirlin, Nucl. Phys. B189, (1981) 442;ADSCrossRefGoogle Scholar
  8. 5a.
    C.H. Llewellyn Smith and J.F. Wheater, Phys.Lett. 105B, (1981) 486.Google Scholar
  9. 6.
    S.L. Glashow, Proc. LEP Summer Study, CERN Yellow Report 79–01 (1979).Google Scholar
  10. 7.
    J.D. Bjorken, Proc. Ben Lee Memorial International Conference on Parity Nonconservation, Weak Neutral Currents and Gauge Theories, ed. D.B. Cline and F.E. Mills (Hardwood Academic Pub., London, 1978), p. 701;Google Scholar
  11. J.D. Bjorken, Proc. XIII Rencontre de Moriond, ed. Tran Than Van (Editions Frontieres Dreux, France, 1978), Vol. II, p. 491;Google Scholar
  12. J.D. Bjorken, Phys. Rev. D19, (1979) 335.MathSciNetADSGoogle Scholar
  13. 8.
    P.Q. Hung and J.J. Sakurai, Nucl. Phys. B143 , (1978) 81.ADSCrossRefGoogle Scholar
  14. 9.
    N. Dombey, Proc. 1981 Banff Summer Institute on Particles and Fields (to be published).Google Scholar
  15. 10.
    S.A. Bludman, Nuov. Cim 9, (1958) 443.MathSciNetGoogle Scholar
  16. 11.
    Y.B. Zel’dovich, JETP 9, (1959) 682.Google Scholar
  17. 12.
    J.J. Sakurai, Currents and Mesons (University of Chicago Press, 1969).Google Scholar
  18. 13.
    I. Yu. Kobzarev, L.B. Okun’ and I. Ya. Pomeranchuk, JETP 14, (1962) 355.Google Scholar
  19. 14.
    N.M. Kroll, T.D. Lee and B. Zumino, Phys. Rev. 157, (1967) 1376.ADSCrossRefGoogle Scholar
  20. 15.
    The boson mass formula (24) first appeared in this form in Ref. 8. However, it is implicit also in Bjorken’s work (Ref. 7).Google Scholar
  21. 16.
    C.H. Llewellyn Smith, Proc. 1981 Banff Summer Institute on Particles and Fields (to be published).Google Scholar
  22. 17.
    This result is anticipated in view of the well-known theorem of C.H. Llewellyn Smith, Phys. Lett. 46B, (1973) 233,Google Scholar
  23. 17a.
    and J.M. Cornwall, D. Levin and G. Tiktopoulos, Phys. Rev. D10, (1974) 1145, stating that tree unitarity enforces gauge invariant vertices.ADSCrossRefGoogle Scholar
  24. 18.
    J.J. Sakurai, Proc. Eight Hawaii Topical Conference on Particle Physics (University of Hawaii Press, Honolulu, 1981).Google Scholar
  25. 19.
    E.H. de Groot and D. Schildknecht, Zeit. Phys. C10, (1981) 55.ADSGoogle Scholar
  26. 20.
    N. Wright, UCLA preprint, UCLA/81/TEP/14.Google Scholar
  27. 21.
    The importance of the C term in broken SU(2) models was first stressed by J.D. Bjorken (Ref. 7).Google Scholar
  28. 22.
    G.J. Gounaris and D. Schildknecht, Zeit. Phys. C12, (1982) 57.ADSGoogle Scholar
  29. 23.
    H. Terazawa, Y. Chikashige and K. Akama, Phys. Rev. D15, (1977) 480;ADSGoogle Scholar
  30. 23a.
    H. Harari, Phys. Lett. 86B, (1979) 83;Google Scholar
  31. 23b.
    M.A. Shupe, Phys. Lett. 86B, (1979) 87;Google Scholar
  32. 23c.
    O. Greenberg and J. Sucher, Phys. Lett. 99B (1981) 339;Google Scholar
  33. 23d.
    R. Barbieri, A. Masiero and R. Mohapatra, Phys. Lett. 105B, (1981) 369.Google Scholar
  34. 24.
    L. Abbott and E. Farhi, Phys. Lett. 101B, (1981) 69.Google Scholar
  35. 25.
    H. Fritzsch and G. Mandelbaum, Phys. Lett. 102B, (1981) 319.Google Scholar
  36. 26.
    J.J. Sakurai, Ann. Phys. 11, (1960) 1.MathSciNetADSCrossRefGoogle Scholar
  37. 27.
    M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, (1961) 953.MathSciNetADSCrossRefGoogle Scholar
  38. 28.
    This line of thinking has recently been advocated particularly by R. Kögerler and D. Schildknecht, CERN preprint TH 3231-CERN (1982).Google Scholar
  39. 29.
    In the vector dominance notation of Ref. 12, λγρ here is to be identified with e/fρ.Google Scholar
  40. 30.
    A. Bramon, E. Etim and M. Greco, Phys. Lett. 41B, (1972) 609.Google Scholar
  41. 31.
    J.J. Sakurai, Phys. Lett. 46B, (1973) 207.Google Scholar
  42. 32.
    K. Ishikawa and J.J. Sakurai, Zeit. Phys. C1, (1979) 117;ADSGoogle Scholar
  43. J.S. Bell and R.A. Bertimann, Zeit. Phys. C4, (1980) 11.ADSGoogle Scholar
  44. 33.
    J.A. Bradley, C.S. Langensiepen and G. Shaw, University of Manchester preprint, M/C TH 81/09.Google Scholar
  45. 34.
    P. Chen and J.J. Sakurai, Phys. Lett. 110B, (1982) 481.Google Scholar
  46. 35.
    H. Fritzsch and G. Mandelbaum, Phys. Lett. 109B, (1982) 224.Google Scholar

Copyright information

© Springer-Verlag Wien 1982

Authors and Affiliations

  • J. J. Sakurai
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMunichFed. Rep. Germany

Personalised recommendations