Electroweak Processes Beyond the Tree Approximation

  • G. Altarelli
Conference paper
Part of the Acta Physica Austriaca Supplementum XXIV book series (FEWBODY, volume 24/1982)


This set of three lectures is intended to push further at a more advanced level the study of electroweak processes which was started in the parallel courses of Drs. Ecker and Wagner. Much work has been devoted recently to a careful analysis of the higher order corrections to the tree diagram relations on which the experimental tests of the standard model of electroweak interactions are based. The subject seems by now mature for a clear and reasonably compact presentation of methods and results. I shall devote the first part of these lectures to expose in a simple and systematic way how the most important terms in the corrections to the electroweak processes and parameters (sin 2θW, MW, MZ, and so on) arise and can be evaluated. This will lead us into a discussion of leptonic and semileptonic electroweak processes in the formalism of operator expansion and renormalization group methods. The connection with the theory of non—leptonic weak processes is naturally introduced by the close similarity of approach and by the structure of the operator mixings among some semileptonic and non-leptonic amplitudes.


Heavy Quark Anomalous Dimension Free Field Gluon Emission Weak Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Weinberg, Phys. Rev. Letters 19 (1967) 1264;ADSCrossRefGoogle Scholar
  2. 1a.
    A. Salam, in “Elementary Particle Physics”, ed. by N. Svartholm (Almquist and Wiksell, Stockholm, 1968), p. 367.Google Scholar
  3. 1b.
    For reviews see E.S. Abers and B.W. Lee; Phys. Reports 9, 1 (1973);ADSCrossRefGoogle Scholar
  4. 1c.
    J.C. Taylor, “Gauge Theories of Weak Interactions” (Cambridge Univ. Press, 1976);Google Scholar
  5. 1d.
    G. Altarelli, “Phenomenology of Flavordynamics” in “QFD, QCD and Unified Theories”, ed. by K.T. Mahanthappa, J. Randa, Plenum Pub. Corp. New York, 1980.Google Scholar
  6. 2.
    See also: A. De Ruyula, R. Petronzio, A. Savoy-Navarro, Nucl. Phys. B154 (1979) 394.ADSCrossRefGoogle Scholar
  7. 3.
    F. Antonelli, L. Maiani, Nucl. Phys. B186 (1981) 269.ADSCrossRefGoogle Scholar
  8. 4.
    S. Bellucci, M. Lusignoli, L. Maiani, Nucl. Phys. B189 (1981) 329.ADSCrossRefGoogle Scholar
  9. 5.
    See also: W.J. Marciano and A. Sirlin, Phys. Rev. D22 (1980) 2695.ADSCrossRefGoogle Scholar
  10. 5a.
    G.C. Ross, C.H. Llewellyn Smith and J.F. Wheater, Nucl. Phys. B177 (1981) 263.ADSCrossRefGoogle Scholar
  11. 5b.
    S. Dawson, J.S. Hagelin and L. Hall, Harvard preprint HUTD-80/A090.Google Scholar
  12. 5c.
    D.Yu. Bardin, P.Ch. Christova and O.M. Fedorenko, Nucl. Phys. B175 (1980) 435.ADSCrossRefGoogle Scholar
  13. 5d.
    S.Sakakibara, Dortmund preprint DO/THI/80.Google Scholar
  14. 5e.
    J. Kubo and S. Sakakibara, Dortmund preprint DO-TH 80/25.Google Scholar
  15. 5f.
    E.A. Paschos and W. Wirbel, Dortmund preprint DO-TH 81/4.Google Scholar
  16. 5g.
    I. Antoniadis, C. Roiesnel and C. Kounnas. Ecole Polytechnique preprint, LPTENS 81/4.Google Scholar
  17. 6.
    J. Kiskis, Phys. Rev. D8 (1973) 2129.ADSGoogle Scholar
  18. 6a.
    R. Barlow and S. Wolfram, Phys. Rev. D20 (1979) 2198.ADSGoogle Scholar
  19. 6b.
    D.Yu. Bardin and O.M. Fedorenko, Yad Fiz. 30 (1979) 811.Google Scholar
  20. 6c.
    A. Sirlin and W.J. Marciano, New York University preprint NYO/TR3/81.Google Scholar
  21. 6d.
    D.Yu. Bardin, O.M. Fedorenko and N.M. Shumeiko, Yad.Fiz. 32 (1980) 782, and Dubna preprint E2–80-503.Google Scholar
  22. 6e.
    P. Salomons and Y. Ueda, Phys. Rev. D11 (1975) 2606.ADSGoogle Scholar
  23. 6f.
    N. Byers, R. Ruckl and A. Yano, Physica 96A (1979) 163.CrossRefGoogle Scholar
  24. 6g.
    M. Green and M. Veltman, Nucl. Phys. B169 (1980) 137 (E: B175 (1980) 547).MathSciNetADSCrossRefGoogle Scholar
  25. 6h.
    K. Aoki, Z.Hioki, R. Kawabe, M. Konuma and T. Muta, Kyoto preprint RIFP-416.Google Scholar
  26. 6i.
    G. Passarino and M. Veltman, Nucl. Phys. B160 (1979) 151.ADSCrossRefGoogle Scholar
  27. 6j.
    M. Consoli, Nucl. Phys. B160 (1979) 208.ADSCrossRefGoogle Scholar
  28. 7.
    F. Antonelli, G. Corbo, M. Consoli, O. Pellegrino, Nucl. Phys. B183 (1981) 195.ADSCrossRefGoogle Scholar
  29. 8.
    C.H.Llewellyn Smith, J.F. Wheater, Oxford Preprint 68/81.Google Scholar
  30. 9.
    A.Sirlin, New York University Preprint, NYU/TR8/81.Google Scholar
  31. 10.
    G. Altarelli, R.K. Ellis, L. Maiani, R. Petronzio, Nucl. Phys. B88 (1975) 215.ADSCrossRefGoogle Scholar
  32. 11.
    N. Cabibbo, L. Maiani, Phys. Lett. 79B (1978) 109.Google Scholar
  33. 11a.
    N. Suzuki, Nucl. Phys. B145 (1978) 420.ADSCrossRefGoogle Scholar
  34. 11b.
    N. Cabibbo, G. Corbo, L. Maiani, Nucl. Phys. B155 (1979) 93.ADSCrossRefGoogle Scholar
  35. 12.
    M. Kobayashi and K. Muskawa, Progr. Theor. Phys. 49 (1973) 652.ADSCrossRefGoogle Scholar
  36. 12a.
    S. Pakvasa and H. Sugawara, Phys. Rev. D14 (1976) 305.ADSGoogle Scholar
  37. 12b.
    L. Maiani, Phys. Lett. 62B (1976) 183.Google Scholar
  38. 13.
    C. Fisher, private communication; see also the Proceedings of the Moriond Workshop on Heavy Flavours, ed. by J. Tran Thanh Van, 1982.Google Scholar
  39. 14.
    K. Wilson, Phys. Rev. 179 (1979) 1499.ADSCrossRefGoogle Scholar
  40. 15.
    S.L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D2 (1970) 1285.ADSGoogle Scholar
  41. 16.
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B120 (1977) 316; JEPT (Sov. Phys.) 45 (1977) 670; see also C.T. Hill and G.G. Ross, Phys. Lett 94B (1980) 234.ADSCrossRefGoogle Scholar
  42. 16a.
    N.B. Wise and E. Witten, Phys. Rev. D20 (1979) 1216.ADSGoogle Scholar
  43. 16b.
    B.W. Lee and M.K. Gaillard, Phys. Rev. Lett. 33 (1974) 108.ADSCrossRefGoogle Scholar
  44. 17.
    G. Altarelli and L. Maiani, Phys. Lett. 52B (1974) 351.Google Scholar
  45. 18.
    G. Altarelli G. Curci, G. Martinelli, S. Petrarca, Phys. Lett. 99B (1981) 141; Nucl. Phys. B187 (1981) 461.Google Scholar
  46. 19.
    For recent analysis see:Google Scholar
  47. 19a.
    F.J. Gilman and M.B. Wise, Phys. Rev. D20 (1979) 2392.ADSGoogle Scholar
  48. 19b.
    B. Guberina and R.D. Peccei, Nucl. Phys. B163 (1980) 289.ADSCrossRefGoogle Scholar
  49. 19c.
    F. Buccella, M. Lusignoli, L. Maiani and A. Pugliese, Nucl. Phys. B152 (1979) 461.ADSCrossRefGoogle Scholar
  50. 20.
    B.W. Lee, M.K. Gaillard and G. Rosner, Rev. Mod. Phys. 47 (1975) 277.ADSCrossRefGoogle Scholar
  51. 20a.
    G. Altarelli, N. Cabibbo and L. Maiani, Nucl. Phys. B88 (1975) 285; Phys. Lett. 57B (1975) 277.ADSCrossRefGoogle Scholar
  52. 20b.
    S.R. Kingsley, S. Treiman, F. Wilczek and A. Zee, Phys. Rev. D11 (1975) 1914.CrossRefGoogle Scholar
  53. 20c.
    J. Ellis, M.K. Gaillard and D. Nanopoulos, Nucl. Phys. B100 (1975) 313.ADSCrossRefGoogle Scholar
  54. 21.
    J.L. Cortes et al., PAR-LPTHE 80/31 (1980).Google Scholar
  55. 21a.
    U. Baur, H. Fritzsch, Univ. München Preprint (1981).Google Scholar
  56. 22.
    B. Guberina, S. Nussinov, R.D. Peccei and R. Rückl, Phys. Lett. 85B (1979) 111; see alsoGoogle Scholar
  57. 22a.
    R.D. Peccei, R. Rückl MPI-PAE/PTH 75/81/1981.Google Scholar
  58. 23.
    H.H. Trilling, Rapporteur’s talk at Int. Conf. on High Energy Physics, Madison 1980.Google Scholar
  59. 24.
    M. Bander, D. Silverman and A. Soni, Phys. Rev. Lett 44 (1980) 7.ADSCrossRefGoogle Scholar
  60. 24a.
    H. Fritzsch and P. Minkowsky, Phys. Lett. 90B (1980) 455; Nucl. Phys. B171 (1980) 413.Google Scholar
  61. 24b.
    W. Bernreuther, O. Nachtmann and B. Stech, Z. Phys. C4 (1980) 257.Google Scholar

Copyright information

© Springer-Verlag Wien 1982

Authors and Affiliations

  • G. Altarelli
    • 1
    • 2
  1. 1.Istituto di FisicaUniversitá di Roma IRomaItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di RomaItaly

Personalised recommendations