The Electroweak Interaction in e+e- Annihilations

  • R. Marshall
Conference paper
Part of the Acta Physica Austriaca Supplementum XXIV book series (FEWBODY, volume 24/1982)


The role of e+e- annihilation in studying the weak neutral current has taken on an increased significance during the last two or three years due to the operation of PETRA and PEP which provide values of s (= C.M. energy2) in excess of 1000 GeV2. Although it was clear from the outset that several years would be needed to collect enough data to make an accurate determination of the neutral current parameters, it was not long after PETRA had started operation that it was realised how even a modest amount of data could put tight limits on some of the lepton couplings [1]. The data also restricted the scope of possible extended gauge models.


Gauge Boson Total Cross Section Polarisation Asymmetry Axial Coupling Hadron Final State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Marshall, RL-80–029 and Proc. XV. Rencontre de Moriond, Les Arcs, France, 9–21 March 1980.Google Scholar
  2. 2.
    N. Cabibbo and R. Gatto, Phys. Rev. 124 (1961) 1577.ADSCrossRefGoogle Scholar
  3. 3.
    J. Ellis and M.K. Gaillard, Physics with very high energy +e- colliding beams, CERN 7 6–18 (November 1976).Google Scholar
  4. 4.
    F.A. Behrends and R. Kleiss, Nucl. Phys. B177 (1981) 237.ADSCrossRefGoogle Scholar
  5. 5.
    J.J. Sakurai, UCLA/77/TEP/15 and Neutrino ’77, Int. Conf. on Neutrino Physics and Neutrino Astrophysics, Elbrus, USSR, June 1977.Google Scholar
  6. 6.
    R. Budny, Phys. Lett. 55B (1975) 227.CrossRefGoogle Scholar
  7. 7.
    L.M. Sehgal, PITHA 80/5. Int. School of Elementary Particles Physics, Kupari, Dubrovnik, Yugoslavia, 16–30 September 1979.Google Scholar
  8. 8.
    R.P. Feynman, Proc. Neutrino ’72, Vol.11, Balatonfüred, June 1972. G. Farrar and J.L. Rosner, Phys. Rev. D7 (1973) 2747.ADSGoogle Scholar
  9. 8a.
    R. Cahn and E. Colglazier, Phys. Rev. D9 (1974) 2658.ADSGoogle Scholar
  10. 8b.
    S.J. Brodsky and N. Weiss, Phys. Rev. D16 (1977) 2325.ADSCrossRefGoogle Scholar
  11. 8c.
    C.J. Maxwell and M.J. Teper, Zeit. f. Phys. C7 (1981) 295.Google Scholar
  12. 9.
    G.F. Pearce, private communication.Google Scholar
  13. 10.
    A. Bartl et al., Zeit. f. Phys. C6 (1980) 335.Google Scholar
  14. 10a.
    J. Nieves, Phys. Rev. D20 (1979) 2775.ADSGoogle Scholar
  15. 10b.
    J. Ranft and G. Ranft, Zeit. f. Phys. C12 (1982) 253.Google Scholar
  16. 11.
    J. Jersak et al., Phys. Lett. 98B (1981) 363.Google Scholar
  17. 12.
    V. Barger et al., Phys. Lett. D22 (1980) 727.Google Scholar
  18. 13.
    V. Elias et al., Phys. Lett. 73B (1978) 451.Google Scholar
  19. 14.
    E.H. de Groot et al., Phys. Lett. 90B (1980) 427 and 95B (1980) 128.Google Scholar
  20. 15.
    E.H. de Groot, G.J. Gounaris and D. Schildknecht, Zeit. f. Phys. C5 (1980) 127Google Scholar
  21. 15a.
    E.H. de Groot and D. Schildknecht, Zeit. f. Phys. C10 (1981) 139 and BI-TP 80/32 December 1980.Google Scholar
  22. 16.
    M. Kuroda and D.Schildknecht, BI-TP 81/22 December 1981.Google Scholar
  23. 17.
    G.J. Gounaris and D. Schildknecht, Zeit. f. Phys. C12 (1982) 57.CrossRefGoogle Scholar
  24. 18.
    P.Q. Hung and J.J. Sakurai, Nucl. Phys. B143 (1978) 81.ADSCrossRefGoogle Scholar
  25. 19.
    P. Steffen, XVII. Rencontre de Moriond. Les Arcs, France, March 1982. A. Wagner, Frühjahrstagung der Deutschen Phys. Ges. Karlsruhe, March 1982.Google Scholar
  26. 20.
    D.H. Perkins, Oxford Univ. preprint 81/037. Royal Society Meeting on Gauge Theories, London, April 1981.Google Scholar

Copyright information

© Springer-Verlag Wien 1982

Authors and Affiliations

  • R. Marshall
    • 1
  1. 1.Rutherford Appleton LaboratoryOxonGreat Britain

Personalised recommendations