• W. Lindinger
  • F. Howorka
  • J. M. Shull
  • A. V. Phelps
  • E. C. Zipf
  • Y.-K. Kim
  • J. H. Futrell


Information on plasma densities (total charge carrier densities as well as densities of individual ion species), on plasma temperatures and on the excitation of various plasma components is obtained by a variety of diagnostic methods, involving photon spectroscopy, probe measurements as well as mass spectrometric plasma sampling. The latter usually requires the investigation of ions emerging through orifices in walls confining the plasma. So called hole probes (Lindinger, 1971, 1973: Howorka et al., 1973, 1974; Pahl et al., 1972) have proven to be a well suited tool for both ion and electron sampling from plasmas. Such a device consists (Fig. 9.1-1) of a thin metal plate, covered with a non conducting material (e.g. glass), leaving only an area of ≤ 1 mm2 of the metal exposed to the plasma. Located in the center of this area is an aperture of about 50 pm in diameter, the metal plate being only 10 pm thick at this point. Changing the potential of the metal plate allows the hole probe to be operated as a planar Langmuir probe, and at the same time ions and electrons leaving the plasma via the aperture can be investigated. By means of mass spectrometric analysis of the ions sampled from cylindrical hollow cathode discharges, which were movable with respect to the hole probe, radial density profiles of the various ion types present in the negative glow were monitored (Lindinger, 1973; Howorka et al., 1973, 1974). Valuable diagnostic data on plasmas are obtained, when mass spectrometric ion sampling is combined with existing information on electron impact ionization.


Electron Impact Ionization Ionization Cross Section Collision Cross Section Planetary Atmosphere Dissociative Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Egger, F., Märk, T. D. (1978) : Z. Naturforsch. 33a, 1111.Google Scholar
  2. Handle, F., Lindinger , W., Howorka, F., Pahl, M. (1984): Beitr. Plasmaphys. 24. 407–416.Google Scholar
  3. Hasted. J . B. (1972) : Physics of Atomic Collisions , 2nd ed., 396, 399. London : Butterworth.Google Scholar
  4. Helm, H., Howorka, E., Handle, E., Egger, E., Lindinger, W. (1974): J . Phys. B: Atom. Molec. Phys. 7. 1970.Google Scholar
  5. Helm, H., Märk , T. D., Lindinger, W. (1980) : Pure and Appl. Chem. 52. 1739.Google Scholar
  6. Howorka, E., Pahl , M. (1972): Z. Naturforschg. 27 a, 1425 - 1433.Google Scholar
  7. Howorka , E. Lindinger, W., Pahl, M. (1973) : Int. J. Mass Spcctrom. Ion Phys. 12. 67–77.Google Scholar
  8. Howorka, E. Lindinger, W., Varney, R. N. (1974) : J. Chem. Phys. 61. 1180‘1188.Google Scholar
  9. Lindinger, W. (1971): Thesis, University of Innsbruck.Google Scholar
  10. Lindinger, W. (1973) : Phys. Rev.A 7, 328.Google Scholar
  11. Lindinger, W., Howorka, F. (1973) : Rev. Sci. Instrum . 44, 1473.Google Scholar
  12. Pahl, M., Lindinger, W., Howorka, F. (1972) : Z. Nat urforsch. 27 a, 678Google Scholar
  13. Walcher, W. (1944) : Z. Physik 122, 62.Google Scholar
  14. Acton, L. W., Brown, W. A. (1978): Astrophys. J. 225, 1065.ADSGoogle Scholar
  15. Baliunas, S. L., Butler, S. E. (1980): Astrophys. J. Letters 235, L45.ADSGoogle Scholar
  16. Bitter, M. et al (1979): Phys. Rev. Letters 43, 129.ADSGoogle Scholar
  17. Bitter, M. et al. (1981): Bull. Amer. Phys. Soc. 26, 981.Google Scholar
  18. Burgess, A., Summers, H. P. (1969): Astrophys. J. 157, 1007.ADSGoogle Scholar
  19. Burgess, A., Summers, H. P., Culhane, J. L., McWhirter, R. W. P. (1979): M. N. R. A. S. 179, 275.Google Scholar
  20. Butler, S. E., Heil, T. G., Dalgarno, A. (1980): Astrophys. J. 241, 442.ADSGoogle Scholar
  21. Cowan, R. D., Mann, J. B. (1979): Astrophys. J. 232, 940.ADSGoogle Scholar
  22. Crandall, D. H. (1981): Physica Scripta 23, 153.ADSGoogle Scholar
  23. Culhane. J. L. et al. (1981): Astrophys. J. Letters 244, L 141.Google Scholar
  24. Doschek, G. A., Feldman, U., Cowan, R. D. (1981): Astrophys. J. 245, 315.ADSGoogle Scholar
  25. Gabriel, A., Jordan, C. (1969): M. N. R. A. S. 145, 241.ADSGoogle Scholar
  26. Gabriel, A., Jordan. C. (1973): Astrophys. J. 186, 327.ADSGoogle Scholar
  27. Gabriel, A. et al. (1981): Astrophys. J. 244,L 147.Google Scholar
  28. Gull, T. R., Fesen, R. A. (1982): Astrophys. J. Letters 260, L75.ADSGoogle Scholar
  29. Itoh, H. (1977): Publ. Ast. Soc. Japan 29, 813.ADSGoogle Scholar
  30. Jones, C. et al. (1979): Astrophys. J. Letters 234, L21.ADSGoogle Scholar
  31. Jordan, C. (1969): M. N. R. A. S. 142, 501.ADSGoogle Scholar
  32. Jordan, C. (1970): M. N. R. A. S. 148, 17.ADSGoogle Scholar
  33. Kallman, T. R., McCray, R. (1982): Astrophys. J. Suppl. 50, 263.ADSGoogle Scholar
  34. Källne. E.. Källne, J., Pradhan. A. K. (1983): Phys. Rev. A. 28, 467.ADSGoogle Scholar
  35. Linsky. J. (1982): Unpublished lUE data.Google Scholar
  36. Lotz. W. (1967): Z. Physik 206, 205.ADSGoogle Scholar
  37. Lotz. W. (1968): Z. Physik 216, 241.ADSGoogle Scholar
  38. McCray, R. A., Snow, T. P. (1979): Ann. Rev. Astr. Astrophys. 17, 213.ADSGoogle Scholar
  39. McKee. C. F., Hollenbach, D. J. (1980): Ann. Rev. Astr. Astrophys. 18, 219.ADSGoogle Scholar
  40. Merts, A. L., Cowan, R. D., Magee, N. H. (1976): Los Alamos Scientific Laboratory Report LA-6220MS “The Calculated Power Output from a Thin Iron-Seeded Plasma”.Google Scholar
  41. Mewe, R., Schrivjer, J. (1980): Astr. Astrophys. 87, 261.ADSGoogle Scholar
  42. Mushotzky, R. F., Serlemitsos, P. J., Smith, B. W., Boldt, E. A., Holt, S. S. (1978): Astrophys. J. 225, 21.MathSciNetADSGoogle Scholar
  43. Petrasso, R.. Seguin. F. H.. Loter, N. G.. Marmar, E., Rice. J. (1982): Phys. Rev. Letters 49, 1826.ADSGoogle Scholar
  44. Pradhan, A. K., Shull. J. M. (1981): Astrophys. J. 249, 821.ADSGoogle Scholar
  45. Raymond. J. R. (1979): Astrophys. J. Suppl. 39, 1.Google Scholar
  46. Raymond, J. R.. Smith. B. W. (1977): Astrophys. J. Suppl. 35, 419.ADSGoogle Scholar
  47. Shull. J. M. (1981): Astrophys. J. Suppl. 46, 27.Google Scholar
  48. Shull, J. M. (1982): Astrophys. J. 262, 308.ADSGoogle Scholar
  49. Shull. J. M.. McKee, C. F. (1979): Astrophys. J 227, 131.ADSGoogle Scholar
  50. Shull. J. M.. Van Steenberg. M. (1982): Astrophys. J. Suppl. 48. 95: errata: 49, 351.ADSGoogle Scholar
  51. Szymkowiak, A.. Shull. J. M., Hamilton, A. J. S.. Holt, S. S. (1985): Astrophys. J.: In preparation. TFR Group. Dubau, J., Loulergue, M. (1981): J. Phys. B. 15, 1007.Google Scholar
  52. Weisheit. J. C. (1975): J. Phys. B8, 2556.Google Scholar
  53. Winkler. P. F., Canizares, C. R., Clark, G. W.. Markert, T. H., Kalata, K., Schnopper, H. W. (1981): Astrophys. J. Letters 246, L 27.Google Scholar
  54. Younger, S. M. (1980): Phys. Rev. A 22, 111.Google Scholar
  55. Younger. S. M. (1982): Phys. Rev. A 26, 3177.Google Scholar
  56. Abbas, I., Bayle, P. (1981): J. Phys. D14, 649–674.ADSGoogle Scholar
  57. Aleksandrov, N. L., Konchakov, A. M. (1981): Fiz. Plasmy 7, 185–191 [Soy. J. Plasma Phys. 7, 103–106 (1981)].Google Scholar
  58. Aleksandrov, N. L., Vysikailo, F. I., Islamov, R. Sh., Kochetov, I. V., Napartovich, A. P., Pevgo, V. G. (1981): Teplofizika Vysokikh Temperatur 19, 22–27 [High Temperature 19, 17–21 (1979)].Google Scholar
  59. Allis, W. P. (1982): Phys. Rev. 26, 1704–1712.ADSGoogle Scholar
  60. Armentrout, P. B., Tarr, S. M., Dori, A., Freund, R. S. (1981): J. Chem. Phys. 75, 2786–2794.ADSGoogle Scholar
  61. Bacri, J., Lagreca, M., Medani, A. (1982): Physica 113C, 403–418.Google Scholar
  62. Baksht, F. G., Yur’ev, V. G. (1979): Zh. Tech. Fiz. 49, 905–944 [Soy. Phys. Tech. Phys. 24, 535–557 (1979)].Google Scholar
  63. Bekefi, G. (1976): Principles of Laser Plasmas. New York: Wiley.Google Scholar
  64. Bhasavanich, D., Parker, A. B. (1977): Proc. R. Soc. Lond. A358, 385–403.ADSGoogle Scholar
  65. Bhattacharya, A. K. (1979): J. Appl. Phys. 50, 6207–6210.ADSGoogle Scholar
  66. Biberman, L. M., Vorob’ev, V. S., Yakubov, I. T. (1979): Usp. Fiz. Nauk. 128, 233–271 [Sov. Phys. Usp. 22, 411–432 (1979)].Google Scholar
  67. Boeuf, J. P., Marode, E. (1982): J. Phys. D15, 2169–2187.ADSGoogle Scholar
  68. Bogdanova. V. I., Burtsev, V. A., Kazachenko, N. I., Kuznetsov, V. S., Trubnikov, G. I. (1982): Fiz. Plazmy 8, 189–192 [Soy. J. Plasma Phys. 8, 107–109 (1982)].Google Scholar
  69. Braglia, G. L., Romanò, L., Digligenti, M. (1982): Phys. Rev. A26, 3689–3694.MathSciNetADSGoogle Scholar
  70. Bretange, J., Delouya, G., Godart, J., Peuch, V. (1981): J. Phys. D14, 1225–1239.Google Scholar
  71. Byszewski, W. W., Reinhold, G. (1982): Phys. Rev. A26, 2826–2831.ADSGoogle Scholar
  72. Byszewski, W. W., Enwright, M. J., Proud, J. M. (1982): IEEE Trans. Plasma Sci. PS-10, 281–285:Google Scholar
  73. Cacciatore, M., Capitelli, M., Gorse, C. (1982): Chem. Phys. 66, 141–151.Google Scholar
  74. Cernoggora, G., Hochard, L., Touzeau, M., Ferreira, C. M. (1981): J. Phys. B14, 2977–2987.ADSGoogle Scholar
  75. Chen, D. M., Pfender, E. (1980): IEEE Trans. Plasma Sci. PS-8, 252–259.Google Scholar
  76. Cherrington, B. E. (1979): Gaseous Electronics and Gas Lasers. Oxford: Pergamon. Cottingham, W. B., Buchsbaum, S. J. (1963): Phys. Rev. 130, 1002–1006.ADSGoogle Scholar
  77. Craggs, J. D. (1978): Spark Channels. In: Electrical Breakdown of Gases ( Meek, J. M., Craggs, J. D.. eds.), 753–839. New York: Wiley.Google Scholar
  78. Devos, F., Boulmer, J., Delpech, J.-F.: J. Physique 40, 215–223 (1979).Google Scholar
  79. Dothan, F., Kagan, Yu. M. (1979): J. Phys. D12, 2155–2166.ADSGoogle Scholar
  80. Dutton, J. (1975): J. Phys. Chem. Ref. Data 4, 577–856.ADSGoogle Scholar
  81. Dutton, J. (1978): Spark Breakdown in Uniform Fields. In: Electrical Breakdown of Gases ( Meek, J. M., Craggs, J.D., eds), 209–318. New York: Wiley.Google Scholar
  82. Ecker, G., Müller, K. G. (1961): Z. Naturforschg. 16a, 246–252.Google Scholar
  83. Emeleus, K. G. (1981): J. Phys. D14, 2179–2187.ADSGoogle Scholar
  84. Felsenthal, P. (1966): J. Appl. Phys. 37, 4557–4560.ADSGoogle Scholar
  85. Finklenburg, W., Maecker, H. (1956): Elektrische Bögen und Thermisches Plasma. In: Handbuch derGoogle Scholar
  86. Physik, Vol. XXII (Flügge, S., ed.), 254–444. Berlin-Göttingen-Heidelberg: Springer.Google Scholar
  87. Fletcher, J. (1981): Recent Measurements of Electron Transport Coefficients. In: Electron and Ion Swarms ( Christophorou, L. G., ed.), 1–10. Oxford: Pergamon.Google Scholar
  88. Folkhard, M. A., Haydon, S. C. (1973): J. Phys. B6, 214–226.ADSGoogle Scholar
  89. Francis, G. (1956): The Glow Discharge at Low Pressure. In: Handbuch der Physik, Vol. XXII ( Flügge, S., ed.), 53–208. Berlin-Göttingen-Heidelberg: Springer.Google Scholar
  90. Fromhold, L. (1964): Fortschr. Physik. 12, 597–643.ADSGoogle Scholar
  91. Fujimoto, T.: (1979): J. Quant. Spectrosc. Radiat. Transfer 21, 439–455.ADSGoogle Scholar
  92. Gallagher, J. W., Beaty, E. C., Dutton, J., Pitchford, L. C. (1983): J. Phys. Chem. Ref. Data 12, 109–152.ADSGoogle Scholar
  93. Gallimberti, I. (1979): J. Physique C7, 193–250.Google Scholar
  94. Garscadden, A. (1978): Ionization Waves in Glow Discharges. In: Gaseous Electronics, Vol. I ( Hirsh, M. N., Oskam, H.J., eds.), 65–107. New York: Academic Press.Google Scholar
  95. Gleizes, A., Kafrouni, H., Dang Duc, H., Maury, C. (1982): J. Phys. D 15, 1031–1045.ADSGoogle Scholar
  96. Goldman, M., Goldman, A. (1978): Corona Discharges. In: Gaseous Electronics, Vol. I ( Hirsh, M. N., Oskam, H.J., eds.), 219–290. New York: Academic Press.Google Scholar
  97. Haddad. G. N., Lin, S. L., Robson, R. E. (1981): Aust. J. Phys. 34, 243–249.Google Scholar
  98. Hantsche. E. (1979): Beitr. Plasmaphys. 19, 59–79.Google Scholar
  99. Hayashi, M. (1976): Proc. 4th IEE Conf. on Gas Discharges, 195–198. London: Inst. Electrical Engr. Haydon, S. C., Williams, O. M. (1976): J. Phys. D9, 523–536.Google Scholar
  100. Helm, H. (1979): Beitr. Plasmaphys. 19, 233–257.ADSGoogle Scholar
  101. Hirsh, M. N., Oskam, H. J. (1978): Gaseous Electronics, Vol. I. New York: Academic Press.Google Scholar
  102. Holmes. R. (1978): Electrode Phenomena. In: Electrical Breakdown of Gases ( Meek, J. M., Craggs, J. D., eds.), 839–867 ). New York: Wiley.Google Scholar
  103. Huxley. L. G. H., Crompton, R. W. (1974): The Diffusion and Drift of Electrons in Gases. New York: Wiley.Google Scholar
  104. Hyman, H. A. (1979): Phys. Rev. A20, 855–859.ADSGoogle Scholar
  105. Ingold. J. H. (1978): Glow Discharges at DC and Low Frequencies: Anatomy of the Discharge. In: Gaseous Electronics, Vol. I (Hirsh, M. N., Oskam, H. J., eds.), 19–64. New York: Academic Press.Google Scholar
  106. Itoh. H., Shimoza, M., Tagashira, H. (1980): J. Phys. D 13, 1201–1209.Google Scholar
  107. Kimblin, C. W. (1974): IEEE Trans. Plasma Sci. PS-2, 310–319.Google Scholar
  108. Kline, L. E., Davies, D. K., Chen, C. L., Chantry, P. J. (1979): J. Appl. Phys. 50,6789–6796. Kondo, K.. Ikuta. N. (1980): J. Phys. D 13,L 33-L 38.Google Scholar
  109. Konovalov. V. P., Son. É. E. (1981): Zh. Tekh. Fiz. 51, 547–554 [Sov. Phys. Tech. Phys. 26, 328–332 (1981)].Google Scholar
  110. Kumar. K.. Skullerud, H. R., Robson, R. E. (1980): Aust. J. Phys. 33, 343–448.MathSciNetADSGoogle Scholar
  111. Kunhardt. E. E., Byszewski, W. W. (1980): Phys. Rev. A21, 2069–2077.Google Scholar
  112. Ligthardt, F. A. S., Keijser. R. A. J. (1980): J. Appl. Phys. 51, 5295–5299.ADSGoogle Scholar
  113. Lin. S. L., Robson. R. E., Mason, E. A. (1979): J. Chem. Phys. 71, 3483–3498.Google Scholar
  114. MacCullum. C. J. (1970): Plasma Phys. 12, 143–148.Google Scholar
  115. MacDonald, A. D. (1966): Microwave Breakdown in Gases, Chap. 4. New York: Wiley.Google Scholar
  116. Marode, E., Bastien. F., Bakker. M. (1979): J. Appl. Phys. 50, 140–146.ADSGoogle Scholar
  117. Mikhalev, L. A.. Selin, L. N. (1974): Zh. Tekh. Fiz. 44, 1095–1097 [Soy. Phys. Tech. Phys. 19, 689–690 (1974)].Google Scholar
  118. Muller Ill. C. H.. Phelps, A. V. (1980): J. Appl. Phys. 51, 6141–6148.ADSGoogle Scholar
  119. Nighan, W. L. (1976): Stability of High-Power Molecular Laser Discharges. In: Principles of Laser Plasmas ( Bekefi, G., ed.), 257–314. New York: Wiley.Google Scholar
  120. Pfau. S.. Rutscher, A., Wojaczek, K. (1969): Beitr. Plasmaphys. 9, 333–358.Google Scholar
  121. Pfau, S.. Winkler. R. (1978): Beitr. Plasmaphys. 18, 113–118.ADSGoogle Scholar
  122. Pitchford, L. C., ONeil, S. V., Rumble. J. R., jr. (1981): Phys Rev. A23, 294–304.ADSGoogle Scholar
  123. Pitchford, L. C., Phelps, A. V. (1982): Phys. Rev. A25, 540–554.ADSGoogle Scholar
  124. Raether, H. (1964): Electron Avalanches and Breakdown in Gases. London: Butterworth. Reid. I. D. (1979): Aust. J. Phys. 32, 231–254.Google Scholar
  125. Reshenov. S. P. (1981): Zh. Tech. Fiz. 51, 1393–1402 [Soy. Phys. Tech. Phys. 26, 800–805 (1981)].Google Scholar
  126. Sakai. Y., Kaneko, S., Tagashira, H., Sakamoto, S. (1979): J. Phys. D 12, 23–31.Google Scholar
  127. Sigmond. R. S. (1978): Corona Discharges. In: Electrical Breakdown in Gases ( Meek, J. M., Craggs, J. D.. eds.). 319–384. New York: Wiley.Google Scholar
  128. Tagashira, H., Sakai, Y., Sakamoto, S. (1977): J. Phys. D 10, 1051–1063.ADSGoogle Scholar
  129. Taniguchi, T., Tagashira, H., Sakai, Y. (1978): J. Phys. D 11, 1757–1768.ADSGoogle Scholar
  130. Tzeng, T.. Kunhardt, E. E. (1983): Bull. Am. Phys. Soc. 28, 180.Google Scholar
  131. Uhlenbusch, J. (1974): Non-Equilibrium Effects in Arc Discharges. In: Gaseous Electronics (McGowan, J.W., John, P. K., eds.). Chap. 7. Amsterdam: North-Holland.Google Scholar
  132. Velikhov, E. P., Pis’mennyï. V. D., Rakhimov, A. T. (1977): Usp. Fiz. Nauk. 122, 419–447 [Soy. Phys. Usp. 20, 586–602 (1977)].Google Scholar
  133. Vriens, L., Smeets, A. H. M. (1980): Phys. Rev. A 22, 940–951.Google Scholar
  134. Wilhelm, J., Winkler, R. (1979): J. Physique C 7, 251–267.Google Scholar
  135. Wilhelm, J., Winkler, R. (1980): Ann. Phys. Leipzig 37, 35–56.ADSGoogle Scholar
  136. Winkler, R. B., Wilhelm, J., Winkler, R. (1983): Beitr. Plasmaphys. 23, 25–40.Google Scholar
  137. Yoshida. K., Taniguchi, T., Tagashira, H. (1979): J. Phys. D 12, L 3-L 7.Google Scholar
  138. Yoshida, S., Phelps, A. V., Pitchford, L. C. (1983): Phys. Rev. A27, 2858–2867.ADSGoogle Scholar
  139. Beitling, E. J., Feldman, P. D. (1978): Geophys. Res. Lett. 5, 51.ADSGoogle Scholar
  140. Bernstein, W., McGarity, J. O., Konradi, A. (1983): Geophys. Res. Lett. 10, 1124.ADSGoogle Scholar
  141. Borst, W. L., Zipf, E. C. (1970): Phys. Rev. J A, 834.Google Scholar
  142. Borst, W. L., Zipf, E. C. (1970): Phys. Rev. 1 A, 1410.Google Scholar
  143. Brook, E., Harrison, M. F. A., Smith, A. C. H. (1978): J. Phys. B11, 3115–3132.ADSGoogle Scholar
  144. Crosswhite, H. M., Zipf, E. C., Fastie, W. G. (1962): J. Opt. Soc. Am. 52, 643.ADSGoogle Scholar
  145. Dehmer, P. M., Berkowitz, J., Chupka, W. A. (1973): J. Chem. Phys. 59, 5777.Google Scholar
  146. Dehmer, P. M., Luken, W. L., Chupka, W. A. (1977): J. Chem. Phys. 67, 195.Google Scholar
  147. Dalgarno, A., Victor, G. A., Hartquist, T. W. (1981): Geophys. Res. Lett. 8, 603. Erdman, P. W., Zipf, E. C. (1983): EOS 64, 785.Google Scholar
  148. Erdman, P. W., Espy, P. J., Zipf, E. C. (1981): Geophys. Res. Lett. 8, 1163.ADSGoogle Scholar
  149. Gorman, M. R., Zipf, E. C. (1981): Bull. Am. Phys. Soc. 27, 100.Google Scholar
  150. Hernandez, S. P., Doering, J. P., Abreu, V. J., Vector, G. A. (1983): Planet. Space Sci. 31, 221.ADSGoogle Scholar
  151. Hibbert, A., Bates, D. R. (1981): Planet. Space Sci. 29, 263.ADSGoogle Scholar
  152. Huffman, R. E., Larrabee, J. C., Tanaka, Y. (1967): J. Chem. Phys. 46, 2213.ADSGoogle Scholar
  153. Jackman, C. H., Garvey, R. H., Green, A. E. S. (1977): J. Geophys. Res. 82, 5081.ADSGoogle Scholar
  154. Jones, R. A., Rees, M. H. (1973): Planet. Space Sci. 21, 537.Google Scholar
  155. Kao, W. W., Zipf, E. C., Erdman, P. W. (1983): EOS 64, 787.Google Scholar
  156. Kao, W. W., Zipf, E. C. (1984): J. Chem. Phys. (in print).Google Scholar
  157. Kieffer, L. J., Dunn, G. H. (1966): Rev. Mod. Phys. 38, 1.ADSGoogle Scholar
  158. Knight, R. D. (1982): Phys. Rev. Lett. 48, 792.ADSGoogle Scholar
  159. Lee, L. S., Doering, J. P., Potemera, T. A., Brace, L. H. (1980): Planet. Space Sci. 28, 947.ADSGoogle Scholar
  160. Meier, R. R. (1982): J. Geophys. Res. 87, 6307.ADSGoogle Scholar
  161. Papadopoulos, K. (1982): Theory of Beam Plasma Discharge. In: Artificial Particle Beam in Space Plasma Studies ( Grandel, B., ed.), 505–523. New York: Plenum Press.Google Scholar
  162. Peach, G. (1970): J. Phys. B3, 328.ADSGoogle Scholar
  163. Rapp, D., Englander-Golden, P., Briglia, D. D. (1965): J. Chem. Phys. 42, 4081.ADSGoogle Scholar
  164. Rees, M. H., Jones, R. A. (1973): Planet. Space Sci. 21, 1213.ADSGoogle Scholar
  165. Sharp, W. E. (1978): Geophys. Res. Lett. 5, 708.ADSGoogle Scholar
  166. Sivjee, G. G. (1983): Geophys. Res. Lett. 10, 349.ADSGoogle Scholar
  167. Stamnes, K., Rees, M. H. (1983): J. Geophys. Res. 88, 6301.ADSGoogle Scholar
  168. Stone, E. J., Zipf, E. C. (1973): J. Chem. Phys. 58, 4278.ADSGoogle Scholar
  169. Stone, E. J., Zipf, E. C. (1974): J. Chem. Phys. 60, 4237.ADSGoogle Scholar
  170. Tate, J. T., Smith, P. T. (1932): Phys. Rev. 39, 270.ADSGoogle Scholar
  171. Torr, D. G., Torr, M. R. (1978): Rev. Geophys. and Space Phys. 16, 327.ADSGoogle Scholar
  172. Torr, D. G., Torr, M. R. (1979): J. Atmosph. Terrest. Phys. 41, 797.ADSGoogle Scholar
  173. Zipf, E. C. (1982): EOS 63, 1050.Google Scholar
  174. Anderson, H. H. (1977): Bibliography and Index of Experimental Range and Stopping Power Data (organized by Ziegler, J. F.), Vol. 2. New York: Pergamon Press.Google Scholar
  175. Bethe, H. A., Ashkin, J. (1953): In: Experimental Nuclear Physics (Segré, E., ed.), 166–304. New York: J. Wiley.Google Scholar
  176. Fleischer, R. L., Price, P. B., Walker, R. M. (1975): Nuclear Tracks in Solids, 39–42. Berkeley: University of California Press.Google Scholar
  177. International Commission on Radiation Units and Measurements (1979): Average Energy Required to Produce an Ion Pair, ICRU Report No. 31.Google Scholar
  178. International Commission on Radiation Units and Measurements (1983): Stopping Powers for Electrons and Positrons. ICRU Report No. 36.Google Scholar
  179. Kim, Y.-K., Inokuti, M. (1971): Phys. Rev. A3, 665–678.ADSGoogle Scholar
  180. Märk, T. D., Castleman, A. W., jr. (1984): Adv. Atom. Molec. Phys. 20, 65–172.Google Scholar
  181. Moore, C. E. (1970): Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra. NSRDS-NBS34 (U.S. Government Printing Office).Google Scholar
  182. Mozumder, A., Magee, J. L. (1966): Radiat. Res. 28, 203–214; 28, 215–231.Google Scholar
  183. Turner, J. E., Paretzke, H. G., Hamm, R. N., Wright, H. A., Ritchie, R. H. (1982): Radiat. Res. 92, 47–60.Google Scholar
  184. Andlauer, B., Ottinger, C. (1971): J. Chem. Phys. 55, 1471.Google Scholar
  185. Baer, T, Werner, A. S., Tsai, B. P. (1975): J. Chem. Phys. 62, 2497.ADSGoogle Scholar
  186. Beckey, H. D. (1971): Field Ionization Mass Spectrometry. New York: Pergamon Press.Google Scholar
  187. Beynon, J. H., Caprioli, R. M., Ast, T. (1971): Int. J. Mass Spectrom. Ion Phys. 7, 92.Google Scholar
  188. Chesnavich, W. J., Bowers, M. T. (1977): J. Chem. Phys. 66, 2306.Google Scholar
  189. Chesnavich, W. J., Bowers, M. T. (1977): J. Am. Chem. Soc. 99, 1705.Google Scholar
  190. Chupka, W. A.. Kaminsky. M. J. (1961): Chem. Phys. 35, 1991.Google Scholar
  191. Drowart, J., Goldfinger, P. (1967): Angew. Chemie 6, 581.Google Scholar
  192. Dymerski, P. P., Harrison, A. G. (1976): J. Phys. Chem. 80, 2825.Google Scholar
  193. Eland, J. H. D. (1974): Int. J. Mass Spectrom. Ion Phys. 13, 457.Google Scholar
  194. Eland, J. H. D., Frey, R., Kuestler, A., Schulte, H., Brehm, B. (1976): Int. J. Mass. Spectrom. Ion Phys. 22, 155.Google Scholar
  195. Fitch, W., L., Sauter, A. D. (1983): Anal. Chem. 55, 832.Google Scholar
  196. Forst, W. (1973): Theory of Unimolecular Reactions. New York: Academic Press.Google Scholar
  197. Futrell, J. H. (1971): Ion Cyclotron Resonance. In: Dynamic Mass Spectrometry, Vol. 2 ( Price, D., ed.), 97–135. London: Heyden and Son Ltd.Google Scholar
  198. Gilman, J. P., Hsieh, T., Meisels, G. G. (1982): J. Chem. Phys. 76, 3497.ADSGoogle Scholar
  199. Gingerich, K. A. (1980): Molecular Species in High Temperature Vaporization. In: Current Topics inGoogle Scholar
  200. Materials Science, Vol. 6 (Kaldis, E., ed.), 135–447. Amsterdam: North Publishing Co.Google Scholar
  201. Glasstone, J., Laidler, K. J., Eyring, H. (1941): Theory of Rate Processes. New York: McGraw-Hill.Google Scholar
  202. Harrison, A. G., Jones, E. G., Gupta, S. K., Nagy, G. P. (1966): Can. J. Chem. 44, 1967.Google Scholar
  203. Heller, S. R., Heller, R. S., McCormick, A., Maxwell, D. C., Milne, G. W. A. (1967): In: Advances inGoogle Scholar
  204. Mass Spectrometry 7 B (Daly, N. R., ed.), 985. London: Heyden and Son Ltd.Google Scholar
  205. Herod, A. A., Harrison, A. G. (1970): Int. J. Mass Spectrom. Ion Phys. 4, 415.Google Scholar
  206. Hertel, J., Ottinger, C. (1967): Z. Naturforsch. 22a, 1141.Google Scholar
  207. Hills, L. P., Vestal, M. L., Futrell, J. H. (1971): J. Chem. Phys. 54, 3834.ADSGoogle Scholar
  208. Hills, L. P. (1970): Metastable Ions. Ph. D. thesis, Univ. of Utah.Google Scholar
  209. Kiser, R. W. (1966): Introduction to Mass Spectrometry, Chapter 7. New York: Prentice-Hall. Klots, C. E. (1964): J. Chem. Phys. 41, 117.ADSGoogle Scholar
  210. Klots, C. E. (1971): J. Phys. Chem. 75, 1526.Google Scholar
  211. Klots, C. E. (1976): J. Chem. Phys. 64, 4269.ADSGoogle Scholar
  212. Knudsen, M. (1915): Ann. Physik IV Folge 47, 697.ADSGoogle Scholar
  213. Laidler, K. J., King, M. C. (1983): J. Phys. Chem. 87, 2657.Google Scholar
  214. Lampe, F. W., Franklin, J. L., Field, F. H. (1957): J. Am. Chem. Soc. 79, 6129.Google Scholar
  215. Lavanchy, A., Houriet, R., Gaumann, T. (1978): Org. Mass Spectrom. 13, 410.Google Scholar
  216. Lavanchy, A., Houriet, R., Gaumann, T. (1979): Org. Mass Spectrom. 14, 79.Google Scholar
  217. Liardon, R., Gaumann, T. (1969): HeIv. Chim. Acta 52, 1042.Google Scholar
  218. Lifshitz, C. (1978): In: Advances in Mass Spectrometry, 7A (Daly, N. R., ed.), 3–18. London: HeydenGoogle Scholar
  219. Lifshitz, C., Gefen, S. (1980): Int. J. Mass Spectrom. Ion Phys. 35, 31.Google Scholar
  220. Lifshitz, C. (1983): J. Phys. Chem. 87, 2304.Google Scholar
  221. Light, J. C. (1967): Disc. Farad. Soc. 44, 14.Google Scholar
  222. Mann, J. B. (1970): In: Recent Development in Mass Spectrometry (Ogata, K., Hayakawa, T., eds.), 814–819. Baltimore: University Park Press.Google Scholar
  223. Margrave, J. L., ed. (1967): The Characterization of High Temperature Vapors. New York: Wiley.Google Scholar
  224. McLafferty, F. W. (1970): In: Recent Developments in Mass Spectroscopy (Ogata, K., Hayakawa, T., eds.), 70. Baltimore: University Park Press.Google Scholar
  225. Murad, E. (1980): J. Chem. Phys. 73, 1381.Google Scholar
  226. Murad, E. (1981): J. Chem. Phys. 75, 4080.Google Scholar
  227. Ottinger, C. (1967): Z. Naturforsch. 22a, 20.Google Scholar
  228. Otvos, J. W., Stevenson, D. P. (1956): J. Am. Chem. Soc. 78, 546.Google Scholar
  229. Pechukas, P., Light, J. C. (1965): J. Chem. Phys. 42, 3281.MathSciNetADSGoogle Scholar
  230. Pottie, R. F., Cocke, D. L., Gingerich, K. A. (1973): Int. J. Mass Spectrom. Ion Phys. 11, 41.Google Scholar
  231. Rosenstock, H. M., Wallenstein, M. B., Wahrhaftig, A. L., Eyring, H. (1952): Proc. Nat. Acad. Sciences, USA 38, 667.ADSGoogle Scholar
  232. Rosenstock, H. M., Krauss, M. (1963): Quasi-Equilibrium Theory of Mass Spectra. In: Mass Spectrometry of Organic Ions ( McLafferty, F. W., ed.), 1. New York: Academic Press.Google Scholar
  233. Rosenstock, H. M. (1968): In: Advances in Mass Spectrometry, Vol. 4, 523. London: Inst. of Petroleum.Google Scholar
  234. Simm, I. G., Danby, C. J., Eland, J. H. D. (1974): Int. J. Mass Spectrom. Ion Phys. 14, 285.Google Scholar
  235. Stafford, F. E. (1971): High Temperatures High Pressures 3, 213.Google Scholar
  236. Stanton, H. E., Chupka, W. A., Inghram, M. G. (1956): Rev. Sci. Instr. 27, 109.ADSGoogle Scholar
  237. Stockbauer, R. (1973): J. Chem. Phys. 58, 3800.ADSGoogle Scholar
  238. Stockbauer, R., Inghram, M. J. (1976): J. Chem. Phys. 65, 4081.ADSGoogle Scholar
  239. Truhlar, D. G., Hase, W. L., Hynes, J. T. (1983): J. Phys. Chem. 87, 2664.Google Scholar
  240. Venkataraghavan, R., Dayringer, H. E., Atwater, B. L., Pesyna, G. L., McLafferty, F. W. (1978): In:Google Scholar
  241. Advances in Mass Spectrometry, 7 B (Daly, N. R., ed.), 989–992. London: Heyden and Son Ltd.Google Scholar
  242. Vestal, M. L. (1968): In: Fundamental Processes in Radiation Chemistry (Ausloos, P., ed.), Chapter 2. New York: Wiley Interscience.Google Scholar
  243. Vestal, M. L., Futrell, J. H. (1970): J. Chem. Phys. 52, 978.ADSGoogle Scholar
  244. Wahrhaftig, A. L. (1964): The Theory of Mass Spectra and the Interpretation of Ionization Efficiency Curves. In: NATO Advanced Study Institute on Mass Spectrometry ( Reed, R. I., ed.). New York: Academic Press.Google Scholar
  245. Wahrhaftig, A. L. (1972): Theory of Mass Spectra. In: Mass Spectrometry, MTP International Review of Science, Vol. 5 ( Maccoll, A., ed.), 1. London: Butterworths.Google Scholar
  246. Werner, A. S., Baer, T. (1975): J. Chem. Phys. 62, 2900.ADSGoogle Scholar
  247. Wisniewski, S. G., Clow, R. P., Futrell, J. H. (1970): J. Phys. Chem. 74, 2234.Google Scholar

Copyright information

© Springer-Verlag Wien 1985

Authors and Affiliations

  • W. Lindinger
    • 1
  • F. Howorka
    • 1
  • J. M. Shull
    • 2
  • A. V. Phelps
    • 3
  • E. C. Zipf
    • 4
  • Y.-K. Kim
    • 5
  • J. H. Futrell
    • 6
  1. 1.Institut für ExperimentalphysikLeopold-Franzens-UniversitätInnsbruckAustria
  2. 2.Department of Astrophysics and JILAUniversity of Colorado and National Bureau of Standards and Laboratory for Atmospheric and Space PhysicsBoulderUSA
  3. 3.Joint Institute for Laboratory AstrophysicsU.S. Bureau of Standards and University of ColoradoBoulderUSA
  4. 4.Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA
  5. 5.Argonne National LaboratoryArgonneUSA
  6. 6.Department of ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations