Applications of SIMS in Interdisciplinary Materials Characterization

  • Alexander Lodding
  • Hans Odelius
Part of the Mikrochimica Acta book series (MIKROCHIMICA, volume 10)


Although pioneering work on secondary ion mass spectrometry was performed already in the 1930-s, one may say that SIMS as a microstructural-microanalytical technique for materials research saw the light of day about 21 years ago1, 2. As a commercially available tool, SIMS is only some 14 years old3–6. Since about half that time, its typical assets, mechanisms and artifacts have been illuminated by extensive and thorough international discussion7, 8, and today SIMS is widely accepted as an off-age technique for very sensitive three-dimensional characterization of materials. Current trends9–11 are directed mainly towards perfected quantitation, towards efficient routines in daily applications, and towards apparative development for further improved detection sensitivity and spacial resolution.


Bulk Diffusion Depth Resolution Noble Metal Alloy Good Counting Statistic Chemical Enhancement Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Castaing and G. Slodzian, J. microscopie 1, 395 (1962).Google Scholar
  2. 2.
    H. J. Liebl and R. F.K. Herzog, J. Appl. Phys. 34, 2893 (1963).CrossRefGoogle Scholar
  3. 3.
    H. J. Liebl, J. Appl. Phys. 38, 5277 (1967).CrossRefGoogle Scholar
  4. 4.
    J.-M. Rouberol, J. Guernet, P. Dechamps, J. Dagnot, and J.-M. Guyon de la Berge, Proc. 5 th Int. Conf. X-Ray Optics & Microanalysis, 311. Berlin-Heidelberg-New York: Springer-Verlag. 1969.Google Scholar
  5. 5.
    I.W. Drummond and J.V.P. Long, Nature 215, 950 (1967).CrossRefGoogle Scholar
  6. 6.
    C.A. Evans, Jr., Analyt. Chemistry 44, 67A (1972).CrossRefGoogle Scholar
  7. 7.
    Secondary Ion Mass Spectrometry. K.F. J. Heinrich and D.E. Newbury (eds.), NBS Spec. Publ. 427, US Nat. Bureau of Standards. 1975.Google Scholar
  8. 8.
    H.W. Werner, in Applied Surface Analysis, ASTM STP 699. T.L. Barr and L.E. Davis (eds.), p. 81-110, Amer. Soc. Testing & Mat. (1980).Google Scholar
  9. 9.
    SIMS II. A. Benninghoven, C.A. Evans, R.A. Powell, R. Shimizu, H.A. Storms (eds.), Springer Ser. Chem. Phys. 9. Berlin-Heidelberg-New York: Springer-Verlag. 1979.Google Scholar
  10. 10.
    SIMS III. A. Benninghoven, J. Giber, J. László, M. Riedel, H.W. Werner (eds.), Springer Ser. Chem. Phys. 19. Berlin-Heidelberg-New York: Springer-Verlag. 1982.Google Scholar
  11. 11.
    A. Lodding, Rev. on Analyt. Chemistry, L. Niinistö (ed.). Budapest: Akademiai Kiadò. 1982.Google Scholar
  12. 12.
    A. Benninghoven, to be published.Google Scholar
  13. 13.
    H.W. Werner, Surf. & Interf. Analysis 2, 56 (1980).CrossRefGoogle Scholar
  14. 14.
    C.A. Andersen and J.R. Hinthorne, Analyt. Chemistry 45, 1421 (1973).CrossRefGoogle Scholar
  15. 15.
    A. Lodding, to be published.Google Scholar
  16. 16.
    M. Bernheim and G. Slodzian, J. Microsc. Spectrosc. Elec. 6, 141 (1981).Google Scholar
  17. 17.
    V.R. Deline, in Ref.9, p. 48.Google Scholar
  18. 18.
    C.A. Andersen, in Ref.7, p. 79.Google Scholar
  19. 19.
    D. S. Simons and D. E. Newbury, 3rd Int. SIMS Conf., Budapest, 1981.Google Scholar
  20. 20.
    H. Oechsner, in Ref.10, p. 106.Google Scholar
  21. 21.
    G. Slodzian, in Ref.10, p. 115.Google Scholar
  22. 22.
    J. A. McHugh, in Methods and Phenomena, Surface Analysis. S.P. Wolsky and A.W. Czanderna (eds.). Amsterdam: Elsevier. 1975.Google Scholar
  23. 23.
    J.C. Lorin, A. Havette, and G. Slodzian, in Ref.10, p. 140.Google Scholar
  24. 24.
    V. Leroy, J.P. Servais, and L. Habraken, Centre Recherche Metallique, Liège 35, 69 (1973).Google Scholar
  25. 25.
    Ch. W. Magee and W.L. Harrinton, Appl. Phys. Lett. 47, 1232 (1976).Google Scholar
  26. 26.
    Ch. W. Magee, R.E. Honig, and C.A. Evans, Jr., Ref.10, p. 172.Google Scholar
  27. 27.
    J. Hofmann, in Ref.10, p. 186.Google Scholar
  28. 28.
    W.O. Hofer and U. Littmark, in Ref.10, p. 201.Google Scholar
  29. 29.
    M.P. Macht and V. Naundorf, J. Appl. Phys. 11, 7551 (1982).CrossRefGoogle Scholar
  30. 30.
    P. Dorner, W. Gust, M.B. Hintz, A. Lodding, H. Odelius, and B. Predel, Acta Metall. 28, 291 (1980).CrossRefGoogle Scholar
  31. 31.
    H. Liebl, in Ref.9, p. 176.Google Scholar
  32. 32.
    B.L. Bentz and H. Liebl, in Ref.10, p. 30.Google Scholar
  33. 33.
    F.G. Rüdenauer, P. Pollinger, H. Studnicka, H. Gnaser, W. Steiger, and M. J. Higatsberger, in Ref.10, p. 43.Google Scholar
  34. 34.
    G. Slodzian, in Ref.7, p. 33.Google Scholar
  35. 35.
    G. Morrison, in Ref.10, p. 233.Google Scholar
  36. 36.
    R. Seliger, J.W. Ward, V. Wang, and R.L. Kubena, Appl. Phys. Lett. 34, 310 (1979).CrossRefGoogle Scholar
  37. 37.
    P.D. Prewett and D.K. Jefferies, Inst. Phys. Conf. Ser. 54, 316 (1980).Google Scholar
  38. 38.
    W. Steiger, F.G. Rüdenauer, H. Gnaser, P. Pollinger, and H. Studnicka, Mikrochim. Acta [Wien], Suppl. X, 1983, 111.Google Scholar
  39. 39.
    P. Dorner, W. Gust, A. Lodding, H. Odelius, and U. Roll, Acta Metall. 30, 941 (1982).CrossRefGoogle Scholar
  40. 40.
    A. Lodding, H. Odelius, and U. Södervall, in Ref.10, p. 351Google Scholar
  41. 41.
    E. Janzén, A. Lodding, H. Grimmeiss, and Ch. Deline, J. Appl. Phys. 11, 7367 (1982).CrossRefGoogle Scholar
  42. 42.
    P. Dorner, W. Gust, A. Lodding, H. Odelius, B. Predel, and U. Roll, accepted for publ. in Philos. Mag. (1983).Google Scholar
  43. 43.
    U. Södervall, U. Roll, B. Predel, H. Odelius, A. Lodding, and W. Gust, Proc. DIMETA, Tihany(1982).Google Scholar
  44. 44.
    W. Gust, C. Ostertag, B. Predel, U. Roll, A. Lodding, and H. Odelius, Phil. Mag. 47, 395 (1983).CrossRefGoogle Scholar
  45. 45.
    W. Gust, A. Lodding, H. Odelius, B. Predel, and U. Roll, Proc. DIMETA, Tihany (1982).Google Scholar
  46. 46.
    Th. Hehenkamp, A. Lodding, H. Odelius, and V. Schlett, Acta Metall. 27, 827 (1979).Google Scholar
  47. 47.
    L.L. Hench, L.O. Werme, and A. Lodding, in Scientific Basis for Radioactive Waste Management, Vol. 5, Berlin, 1982.Google Scholar
  48. 48.
    L.O. Werme, L.L. Hench, J.-L. Nogues, and A. Lodding, J. Nucl. Mat., in press.Google Scholar
  49. 49.
    L.L. Hench and D.E. Clark, J. Non-Cryst. Sol. 28, 83 (1978).CrossRefGoogle Scholar
  50. 50.
    P.J. Hayward, E.V. Cacchetto, W.H. Hocking, and F.E. Doern, in Scientific Basis for Radioactive Waste Management, Vol. 5, Berlin, 1982.Google Scholar
  51. 51.
    A.E. Morgan, Surf. & Interf. Analysis 2, 123 (1980).CrossRefGoogle Scholar
  52. 52.
    D.E. Clark, A. Lodding, and L.O. Werme, unpublished.Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Alexander Lodding
    • 1
  • Hans Odelius
    • 1
  1. 1.Physics Department and SIMS-LaboratoryChalmers University of TechnologyGothenburgSweden

Personalised recommendations