Multi-Element Preconcentration from Technical Alloys

  • Ewald Jackwerth
  • Horst Mittelstädt
Part of the Mikrochimica Acta book series (MIKROCHIMICA, volume 10)


In recent years the multi-element analysis of technical alloys has become an important field of interest in routine analysis. This is valid not only for some of the new developed materials with very special qualities, but also for many well proved alloys with a wide spread application. As main reason for this development in analysis one may consider the increasing demand in the purity of materials as a consequence of the often found correlation between mechanical, electrical etc. properties of metals and their content of trace elements. Additionally the increasing use of recycled metals leads to an increase of the number of elements present in considerable amounts in the alloying materials. So, even the search for elements generally considered exotic suddenly may become an important task in routine analytical work.


Trace Recovery Zinc Chelate Molecular Stability Technical Alloy Wide Spread Application 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitteilungsblatt der Zinkberatung eV. Düsseldorf, Heft 12, 1977.Google Scholar
  2. 2.
    Zink-Druckguß, Zinkberatung eV. Düsseldorf, 1973.Google Scholar
  3. 3.
    E. Brunhuber, Legierungshandbuch der Nichteisenmetalle. Berlin: Schiele & Schön. 1960.Google Scholar
  4. 4.
    ZAMAK-Feinzinklegierungen, Metallgesellschaft AG, Frankfurt a.M.Google Scholar
  5. 5.
    H.P. Kehrer, Metall 28, 883 (1974).Google Scholar
  6. 6.
    G. Frommey, Z. Metallkunde 67, 361 (1976).Google Scholar
  7. 7.
    H. Johnen, Metall 30, 855 (1976).Google Scholar
  8. 8.
    N. Strafford, P.F. Wyatt, and F.G. Kershaw, Analyst 78, 624 (1953).Google Scholar
  9. 9.
    I.N. Bykova, T.G. Manova, V.G. Silakova, and G.P. Boznyakova, Zh. analit. Khim. (USSR) 28, 1481 (1973); Analyt. Abstr. 28, 1B42 (1975).Google Scholar
  10. 10.
    M. Kimura, Talanta 24, 194 (1977).CrossRefGoogle Scholar
  11. 11.
    E. Jackwerth and H. Linke, Erzmetall 31, 275 (1978).Google Scholar
  12. 12.
    A. Hulanicki, Talanta 14, 1371 (1967).CrossRefGoogle Scholar
  13. 13.
    O. G. Koch and G. A. Koch-DediČ, Handbuch der Spurenanalyse. Berlin-Heidelberg-New York: Springer-Verlag. 1974.Google Scholar
  14. 14.
    H. Bode, Z. analyt. Chem. 143 182 (1954).CrossRefGoogle Scholar
  15. 15.
    H. Bode and F. Neumann, Z. analyt. Chem. 172, 1 (1960).CrossRefGoogle Scholar
  16. 16.
    K. Gleu and R. Schwab, Angew. Chem. 62, 320 (1950).CrossRefGoogle Scholar
  17. 17.
    H. Malissa and E. Schöffmann, Mikrochim. Acta [Wien] 1955, 187.Google Scholar
  18. 18.
    H. Bode, Z. analyt. Chem. 142, 414 (1954).CrossRefGoogle Scholar
  19. 19.
    A.I. Busev, V.M. Byrko, A.P. Tereschtschenko, N.N. Novikova, V.P. Naidina, and P.B. Terentev, Zh. analit. Khim. (USSR) 25, 665 (1970); Analyt. Abstr. 21, 1705 (1971).Google Scholar
  20. 20.
    E. Kovács and H. Guyer, Z. analyt. Chem. 186, 267 (1962).CrossRefGoogle Scholar
  21. 21.
    E. Sebastiani, K. Ohls, and G. Riemer, Z. analyt. Chem. 264, 105 (1973).CrossRefGoogle Scholar
  22. 22.
    H. Berndt and E. Jackwerth, Spectrochim. Acta 30B, 169 (1975).Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Ewald Jackwerth
    • 1
    • 2
  • Horst Mittelstädt
    • 1
  1. 1.Abteilung für ChemieRuhr-Universität BochumFederal Republic of Germany
  2. 2.Abteilung für ChemieRuhr-UniversitätBochumFederal Republic of Germany

Personalised recommendations