Improved Methods of Quantitative Electron Probe Microanalysis of Carbon-ϕ(ρz) Compared to Other Methods

  • A. P. von Rosenstiel
  • P. Schwaab
  • J. D. Brown
Part of the Mikrochimica Acta book series (MIKROCHIMICA, volume 10)


The quantitative determination of carbon in metals and carbides by electron probe microanalysis is difficult because the low energy of the carbon Kα line leads to low efficiency of X-ray generation (the X-ray yield is only about 1%) and detection (the long wavelength requires large d-spacing crystals and special thin window detectors). In addition to this, other more fundamental problems remain. Because absorption coefficients are large, greater accuracy is required of the models for the absorption correction because this correction even for electron energies as low as 4 keV is still quite large. Complicating matters is the fact that mass absorption coefficients which are a necessary parameter in the absorption correction are difficult to measure accurately and hence are not well known. A further factor which could lead to doubts about the success of any quantitative analysis scheme for carbon, is that the C Kα line results from electron transitions involving valence or conduction electrons, and the number and energy of these is structure and bonding dependent. The consequences are that the C Kα line changes shape and width in different compounds and hence the usual measurement of k-ratios from peak heights may have to be supplanted by peak integral measurements. By necessity this is a more time consuming process which the analyst would like to avoid.


Boron Carbide Gaussian Equation Mass Absorption Coefficient Absorption Edge Energy Quantitative Electron Probe Microanalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Baumgartl, A. Büchner, K. Dreyer, P. Schwaab, H. Stender, and M. Vetters, Arch. Eisenhüttenwes. 50, 85 (1979).Google Scholar
  2. 2.
    J.S. Duerr, R.E. Ogilvie, Analyt. Chemistry 44, 2361 (1972).CrossRefGoogle Scholar
  3. 3.
    E. Eichen, J. Tabock, and K.R. Kinsman, Metallography 5, 151 (1972).CrossRefGoogle Scholar
  4. 4.
    G. Runnsjö, Skandinavian Metallurgy 9, 199 (1980).Google Scholar
  5. 5.
    P. Duncumb and D. Melford, in 4th Int. Conf. on X-Ray Optics and Microanalysis, R. Castaing, P. Deschamps, and J. Philibert (eds.). Paris: Herman. 1967. p. 240.Google Scholar
  6. 6.
    E. Kohlhaas and F. Scheiding in 5th Int. Conf. on X-Ray Optics and Microanalysis, G. Möllenstedt and K.H. Gaukler (eds.). Berlin-Heidelberg-New York: Springer-Verlag. 1969. p. 193.Google Scholar
  7. 7.
    E. Kohlhaas and F. Scheiding, Arch. Eisenhüttenwes. 41, 97 (1970).Google Scholar
  8. 8.
    J. Philibert, in 3rd Int. Conf. on X-Ray Optics and Microanalysis, H. H. Pattee, V. E. Cosslett, and A. Engström (eds.). New York: Wiley. 1963. p. 379.Google Scholar
  9. 9.
    W. Weisweiler, Mikrochim. Acta [Wien] 1970, 17.Google Scholar
  10. 10.
    W. Weisweiler, Mikrochim. Acta [Wien] 1975 I, 611.Google Scholar
  11. 11.
    W. Weisweiler, Mikrochim. Acta [Wien] 1975 II, 168.Google Scholar
  12. 12.
    W. Weisweiler, Mikrochim. Acta [Wien] 1972, 145.Google Scholar
  13. 13.
    W. Weisweiler, Mikrochim. Acta [Wien] 1970, 744.Google Scholar
  14. 14.
    J. Ruste, J. Microsc. Spectrosc. Electron. 4, 123 (1979).Google Scholar
  15. 15.
    G. Love and V.D. Scott, Scanning 4, 111 (1981).CrossRefGoogle Scholar
  16. 16.
    G. Springer, Neues Jahrb. Mineral. 106, 241 (1967).Google Scholar
  17. 17.
    J. Philibert and R. Tixier, in Quantitative Electron Probe Microanalysis, NBS. Spec. Publ.298, 1968. p. 13.Google Scholar
  18. 18.
    W. Reuter, in 6th Int. Conf. on X-Ray Optics and Microanalysis, G. Shinoda, K. Kohra, and T. Ichinokawa (eds.). Tokyo: U. Tokyo Press. 1972. p. 121.Google Scholar
  19. 19.
    K.F.J. Heinrich, in The Electron Microprobe. New York: Wiley. 1966.Google Scholar
  20. 20.
    L. Parobek and J.D. Brown, X-Ray Spectrom. 7, 26 (1978).CrossRefGoogle Scholar
  21. 21.
    R.H. Packwood and J.D. Brown, X-Ray Spectrom. 10, 138 (1981).CrossRefGoogle Scholar
  22. 22.
    J.D. Brown and R.H. Packwood, X-Ray Spectrom. 11, 187 (1982).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • A. P. von Rosenstiel
    • 1
    • 2
    • 3
  • P. Schwaab
    • 1
    • 2
    • 3
  • J. D. Brown
    • 1
    • 2
    • 3
  1. 1.Metaalinstituut TNOApeldoornThe Netherlands
  2. 2.Mannesmann, ForschungsinstitutDuisburgFederal Republic of Germany
  3. 3.The University of Western OntarioLondonCanada

Personalised recommendations