Skip to main content

Wissenschaftliche Grundlagen der EKT

  • Chapter
Elektrokonvulsionstherapie

Zusammenfassung

Wie bereits dargelegt, ist die Elektrokonvulsionstherapie (Elektrokrampftherapie, EKT) für die Behandlung schizophrener Psychosen entwickelt worden. Nach Einführung des Verfahrens in die klinische Psychiatrie wurde jedoch sehr bald deutlich, dass der größere therapeutische Gewinn auf dem Gebiet der affektiven Psychosen, insbesondere bei der Depression lag. Sehr rasch hatte sich bei dieser Indikation die EKT zur Therapie der ersten Wahl entwickelt. Als in den 50er Jahren die trizyklischen Antidepressiva eingeführt worden waren, wurde eine Vielzahl von Vergleichsuntersuchungen zwischen EKT und den Pharmaka durchgeführt, die sich teilweise durch sehr große Fallzahlen auszeichneten. Auf dem Gebiet der Schizophrenie sind nach Einführung der Neuroleptika ebenfalls etliche vergleichende Studien durchgeführt worden, allerdings in weitaus geringerer Zahl. Diese früheren Studien werden im folgenden Kapitel aufgrund der hohen Fallzahl unverändert berücksichtigt, wenngleich die methodischen Anforderungen an einen Wirksamkeitsnachweis in den vergangenen Jahrzehnten erheblich gestiegen sind, so dass die Ergebnisse nur noch unter Vorbehalt betrachtet werden können. Über die Arbeiten zur Depression und Schizophrenie hinaus sollen noch die Ergebnisse bezüglich der Manie dargestellt werden, die im deutschsprachigen Raum bisher zu wenig beachtet wurden. Ferner werden die sogenannten Doppelblindstudien dargestellt, die der Aufklärung des Wirksamkeitsmechanismus dienen, aber seinerzeit auch die wissenschaftliche Antwort auf eine ideologisch geführte öffentliche Diskussion darstellten. Schließlich sollen die derzeit aktuellen Forschungsthemen erörtert werden, die die Fragen der kombinierten elektrokonvulsiven und medikamentösen Behandlung betreffen, den Einsatz der EKT bei Therapieresistenz und die Erarbeitung von Behandlungsstrategien, die zur Stabilisierung desTherapieeffektes über die Dauer der EKT-Serie hinaus beitragen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Clinical Psychiatry Committee Report to the Medical Research Council (1965) Clinical trial of the treatment of depressive illness. Br Med J 1: 881–886

    Google Scholar 

  2. Abraham K R, Kulhara P (1987) The efficacy of electroconvulsive therapy in the treatment of schizophrenia. A comparative study. Br J Psychiatry 151: 152–155

    Google Scholar 

  3. Agarwal A, Winny G (1985) Role of ECT-phenothiazine combination in schizophrenia. Indian J Psychiatry 27: 233–236

    PubMed  CAS  Google Scholar 

  4. BagadiaV N, Abhyankar R R, Doshi J, Pradhan PV, Shah L P (1983) A double blind controlled study of ECT vs chlorpromazine in schizophrenia. J Assoc Physicians India 31: 637–640

    Google Scholar 

  5. Baker A A, Game J G, Thorpe J G (1960) Some research into the treatment of schizophrenia in the mental hospital. Journal of Mental Science 106: 203–213

    PubMed  CAS  Google Scholar 

  6. Benatov R, Sirota P, Megged S (1996) Neuroleptic-resistant schizophrenia treated with clozapine and ECT. ConvulsTher 12: 117–121

    CAS  Google Scholar 

  7. Bloch Y, Pollack M, Mor I (1996) Should the administration of ECT during clozapine therapy be contraindicated? Br J Psychiatry 169: 253–254

    PubMed  CAS  Google Scholar 

  8. Brandon S, Cowley P, McDonald C, Neville P, Palmer R, Wellstood-Eason S (1984) Electroconvulsive therapy: results in depressive illness from the Leicestershire trial. Br Med J 288: 22–25

    CAS  Google Scholar 

  9. Brandon S, Cowley P, McDonald C, Neville P, Palmer R, Wellstood-Eason S (1985) Leicester ECT trial: results in schizophrenia. BrJ Psychiatry 146: 177–183

    CAS  Google Scholar 

  10. Bratfos O, Haug J O (1965) Electroconvulsive therapy and antidepressant drugs in manic depressive disease. Acta Psychiatr Scand 41: 588–596

    PubMed  CAS  Google Scholar 

  11. Bruce E M, Crone N, Fitzpatrick G, Frewin S J, Gillis A, Lascelles C F, Levene L J, Merskey M (1960) A comparative trial of ECT and Tofranil. Am J Psychiatry 117: 76

    PubMed  CAS  Google Scholar 

  12. Buchan H, Johnstone E, McPherson K, Palmer R L, Crow J, Brandon S (1992) Who benefits from electroconvulsive therapy? Combined results of the Leicester and Northwick Park trials. BrJ Psychiatry 160: 355–359

    CAS  Google Scholar 

  13. Burrows G D, Norman T R, Judd F K (1994) Definition and differential diagnosis of treatment-resistant depression. Int Clin Psychopharmacol 9: 5–10

    PubMed  Google Scholar 

  14. Cardwell B A, Nakai B (1995) Seizure activity in combined clozapine and ECT: a retrospective view. ConvulsTher 11: 110–113

    CAS  Google Scholar 

  15. Chanpattana W, Chakrabhand M L, Kongsakon R, Techakasem P, Buppanharun W (1999) Short-term effect of combined ECT and neuroleptic therapy in treatment-resistant schizophrenia. J ECT 15: 129–139

    PubMed  CAS  Google Scholar 

  16. Chanpattana W, Chakrabhand M L, Sackeim H A, Kitaroonchai W, Kongsakon R, Techakasem P, Buppanharun W, TuntirungseeY, Kirdcharoen N (1999) Continuation ECT in treatment-resistant schizophrenia: a controlled study. J ECT 15: 178–192

    CAS  Google Scholar 

  17. Childers RT (1964) Comparison of four regimens in newly admitted female schizophrenics. Am J Psychiatry 120: 1010–1011

    PubMed  Google Scholar 

  18. Childers R T, Therrien R (1961) A comparison of trifluoperazine and chlorpromazine in schizophrenia. Am J Psychiatry 118: 552–554

    PubMed  Google Scholar 

  19. Christison G W, Kirch D G, Wyatt R J (1991) When symptoms persist: choosing among alternative somatic treatments for schizophrenia. Schizophr Bull 17: 217–245

    PubMed  CAS  Google Scholar 

  20. Cronholm B, Ottosson J O (1960) Experimental studies of therapeutic action of electroconvulsive therapy in endogenous depression. Acta Psychiatr Neurol Scand [Suppll 145: 69–102

    Google Scholar 

  21. CrowT J, Frith C D, Johnstone E C (1978) How does ECT work? a letter to the editors. Lancet I: 1151

    Google Scholar 

  22. Cutter G R (1978) How does ECT work ?: a tetter to the editor. Lancet I: 1151

    Google Scholar 

  23. Das P S, Saxena S, Mohan D, Sundaram K R (1991) Adjunctive electroconvulsive therapy for schizophrenia. National Medical Journal of India 4: 183–184

    Google Scholar 

  24. Davidson J, McLeod M, Law-Yone B, Linnoila M (1978) Comparison of electroconvulsive therapy and combined phenelzine-amitriptyline in refractory depression. Arch Gen Psychiatry 35: 639–642

    PubMed  CAS  Google Scholar 

  25. DeCarolisV, Giberti F, Roccatagliati G, Rossi R, Venutti G (1964) Imipramin and electroshock in the treatment of depression. Sist Nery 16: 29–42

    Google Scholar 

  26. Exner J E, Jr, MuriIlo L G (1977) A long term follow-up of schizophrenics treated with regressive ECT. Dis Nerv Syst 38: 162–168

    PubMed  Google Scholar 

  27. Fahy P, Imlah N, Harrington) (1963) Acontrolled comparison of electroconvulsive therapy, imipramin and thiopentone sleep in depression. J Neuropsychiatry 3: 310–314

    Google Scholar 

  28. Farah A, Beale M D, Kellner C H (1995) Risperidone and ECT combination therapy: a case series. ConvulsTher 11: 280–282

    CAS  Google Scholar 

  29. Fink M (1979) Efficacy of ECT. Lancet 2: 1303–4

    PubMed  CAS  Google Scholar 

  30. Fink M (1989) The efficacy of electroconvulsive therapy in therapy-resistant psychotic patients. J CI in Psychopharmacol 9: 231–232

    CAS  Google Scholar 

  31. Fink M, Sackeim H A (1996) Convulsive therapy in schizophrenia? Schizophr Bull 22: 27–39

    PubMed  CAS  Google Scholar 

  32. Flint A J, Rifat S L (1998) The treatment of psychotic depression in later life: A comparison of pharmacotherapy and ECT. Int J Geriatr Psychiatry 13: 23–28

    Google Scholar 

  33. Folkerts H W, Michael N, Tolle R, Schonauer K, Mucke S, Schulze-Monking H (1997) Electroconvulsive therapy vs. paroxetine in treatment-resistant depression — a randomized study. Acta Psychiatr Scand 96: 334–342

    PubMed  CAS  Google Scholar 

  34. Frankenburg F R, SuppesT, McLean P E (1993) Combined Clozapine and Electroconvulsive Therapy. ConvulsTher 9: 176–180

    Google Scholar 

  35. Freeman C P (1978) The therapeutic efficacy of electroconvulsive therapy (ECT). A double blind controlled trial of ECT and simulated ECT. Scott Med J 23: 71–75

    PubMed  CAS  Google Scholar 

  36. Freeman C P, Basson J V, Crighton A (1978) Double-blind controlled trail of electroconvulsive therapy (E.C.T.) and simulated E.C.T. in depressive illness. Lancet 1: 738–740

    Google Scholar 

  37. Friedel R 0 (1986)The combined use of neuroleptics and ECT in drug resistant schizophrenic patients. Psychopharmacol Bull 22: 928–930

    Google Scholar 

  38. Gangadhar B N, Kapur R L, Kalyanassundaram S (1982) Comparison of electroconvulsive therapy with imipramine in endogenous depression: A double blind study. Br J Psychiatry 141: 367–371

    Google Scholar 

  39. Greenblatt M, Grosser G H, Wechsler H (1964) Differential response of hospitalised depressed patients to somatic therapy. Am J Psychiatry 120: 935–943

    PubMed  CAS  Google Scholar 

  40. Gregory S, Shawcross C R, Gill D (1985)The Nottingham ECT Study. A double-blind comparison of bilateral, unilateral and simulated ECT in depressive illness. Br J Psychiatry 146: 520–524

    Google Scholar 

  41. Gujavarty K, Greenberg L B, Fink M (1987) Electroconvulsive therapy and neuroleptic medication in therapy-resistant positive-symptom psychosis. ConvulsTher 3: 185–195

    Google Scholar 

  42. Häfner H, Kasper S (1982) Akute lebensbedrohliche Katatonien. Nervenarzt 53: 385–394

    PubMed  Google Scholar 

  43. Janakiramaiah N, Channabasavanna S M, Murthy N S (1982) ECT/chlorpromazine combination versus chlorpromazine alone in acutely schizophrenic patients. Acta Psychiatr Scand 66: 464–470

    PubMed  CAS  Google Scholar 

  44. Janakiramaiah N, Gangadhar B N, Naga Venkatesha Murthy P J, Harish M G, Subbakrishna D K, Vedamurthachar A (2000) Antidepressant efficacy of Sudarshan Kriya Yoga (SKY) in melancholia: a randomized comparison with electroconvulsive therapy ( ECT) and imipramine. J Affect Disord 57: 255–259

    Google Scholar 

  45. Janicak P G (1993)The relevance of clinical pharmacokinetics and therapeutic drug monitoring: anticonvulsant mood stabilizers and antipsychotics. J CI in Psychiatry 54 [Suppli: 35–41

    Google Scholar 

  46. Janicak P G, Davis J M, Gibbons R D, Ericksen S, Chang S, Gallagher P (1985) Efficacy of ECT: a meta-analysis. Am J Psychiatry 142: 297–302

    PubMed  CAS  Google Scholar 

  47. Johnstone E C, Deakin J F W, Lawler P, Frith C D, Stevens M, McPherson K, Crow J (1980) The Northwick Park electroconvulsive therapy trial. Lancet 1317–1320

    Google Scholar 

  48. Kales H C, Dequardo J R, Tandon R (1999) Combined electroconvulsive therapy and clozapine in treatment-resistant schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 23: 547–556

    PubMed  CAS  Google Scholar 

  49. Kino F F, Thorpe F T (1946) Electrical convulsion therapy in 500 selected psychotics. J Ment Sci 92: 138–144

    PubMed  CAS  Google Scholar 

  50. Klapheke M M (1991) Clozapine, ECT, and schizoaffective disorder, bipolar type. Convuls Ther 7: 36–39

    PubMed  Google Scholar 

  51. Konig P, Glatter-Gotz U (1990) Combined electroconvulsive and neuroleptic therapy in schizophrenia refractory to neuroleptics. Schizophr Res 3: 351–354

    PubMed  CAS  Google Scholar 

  52. Kristiansen E (1961) A comparison of treatment of endogenous depression with electroshock and with imipramine (Tofranil). Acta Psychiat Scand 162: 179–187

    CAS  Google Scholar 

  53. Krueger R B, Sackeim H A (1995) Electroconvulsive therapy and schizophrenia. In: Hirsch, S. and Weinberger, D. Schizophrenia. Blackwell, Oxford, England, 503–545

    Google Scholar 

  54. Kuhs H (1995) Stufen der Behandlungsresistenz bei depressiven Störungen definiert nach somatotherapeutischen Verfahren. Nervenarzt 66: 561–567

    PubMed  CAS  Google Scholar 

  55. Lambourn J, Gill D (1978) A controlled comparison of simulated and real ECT. Br J Psychiatr 133: 514–519

    CAS  Google Scholar 

  56. Landy D A (1991) Combined use of clozapine and electroconvulsive therapy. Convuls Ther 7: 218–221

    PubMed  Google Scholar 

  57. Lewis A B (1982) ECT in drug-refractory schizophrenics. Hillside Journal of Clinical Psychiatry 4: 141–154

    CAS  Google Scholar 

  58. Lieberman J A (1999) Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry 46: 729–739

    PubMed  CAS  Google Scholar 

  59. Lieberman J A, Sheitman B B, Kinon B J (1997) Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17: 205–229

    PubMed  CAS  Google Scholar 

  60. Masiar S J, Johns C A (1991) ECT following clozapine. Br J Psychiatry 158: 135–136

    PubMed  CAS  Google Scholar 

  61. May P R, Tuma A H, Dixon W J, Yale C, Thiele D A, Kraude W H (1981) Schizophrenia. A follow-up study of the results of five forms of treatment. Arch Gen Psychiatry 38: 776–784

    Google Scholar 

  62. May P R, Tuma A H, Yale C, Potepan P, Dixon W J (1976) Schizophrenia-a follow-up study of results of treatment. Arch Gen Psychiatry 33: 481–486

    PubMed  CAS  Google Scholar 

  63. May P R A (1968) Treatment of schizophrenia: a comparative study of 5 treatment methods. Science House, New York

    Google Scholar 

  64. McCabe M S (1976) ECT in the treatment of mania: a controlled study. Am J Psychiatry 133: 688–690

    PubMed  CAS  Google Scholar 

  65. McCabe M S, Norris B (1977) ECT versus chlorpromazine in mania. Biol Psychiatry 12: 245–254

    PubMed  CAS  Google Scholar 

  66. McDonald I, Perkins M, Merjerrison G, Podilsky M (1966) A controlled comparison of amitriptyline and electroconvulsive therapy in the treatment of depression. Am J Psychiatry 122: 1427–1431

    PubMed  CAS  Google Scholar 

  67. Medlicott R W (1948) Convulsion therapy: results and complications in four hundred cases. NZ Med J 47: 338–348

    CAS  Google Scholar 

  68. Meduna L (1939) Die Konvulsionstherapie der Schizophrenie: Rückblick and Ausblick. Psychoatrisch Neurologische Wochenschrift 41: 165–169

    Google Scholar 

  69. Meltzer H Y (1992) Dimensions of outcome with clozapine. Br J Psychiatry 160: 46–53

    Google Scholar 

  70. Meltzer H Y, Bastani B, Kwon K Y (1989) A prospective study of clozapine in treatment-resistant schizophrenic patients. Psychopharmacology 99: 568–572

    Google Scholar 

  71. Meyer J E, Simon G, Stille D (1964) Die Therapie der Schizophrenie and der endogenen Depression zwischen 1930 and 1960. Arch Psychiatr Nervenkr 206: 165–179

    PubMed  CAS  Google Scholar 

  72. Milstein V, Small J G, Miller M J, Sharpley P H, Small I F (1990) Mechanisms of action of ECT: schizophrenia and schizoaffective disorder. Biol Psychiatry 27: 1282–1292

    PubMed  CAS  Google Scholar 

  73. Mukherjee S (1989) Mechanisms of the antimanic effect of electroconvulsive therapy. Convuls Ther 5: 227–243

    PubMed  Google Scholar 

  74. Mukherjee S, Sackeim H A, Lee C (1988) Unilateral ECT in the treatment of manic episodes. ConvulsTher 4: 74–80

    Google Scholar 

  75. Mukherjee S, Sackeim H A, Schnur D B (1994) Electroconvulsive therapy of acute manic episodes: a review of 50 years’ experience. Am J Psychiatry 151: 169–176

    PubMed  CAS  Google Scholar 

  76. MuriI to L G, Exner J E, Jr (1973) The effect of regressive ECT with process schizophrenics. Am J Psychiatry 130: 269–273

    Google Scholar 

  77. Nierenberg A A, Amsterdam J D (1990)Treatment-resistant depression: definition and treatment approaches. J CI in Psychiatry 51: 39–47

    Google Scholar 

  78. Prudic J, Haskett R F, Mulsant B, Malone K M, Pettinati H M, Stephens S, Greenberg R, Rifas S L, Sackeim H A (1996) Resistance to antidepressant medications and short-term clinical response to ECT. Am J Psychiatry 153: 985–992

    PubMed  CAS  Google Scholar 

  79. Prudic J, Sackeim H A, Devanand D P (1990) Medication resistance and clinical response to electroconvulsive therapy. Psychiatry Res 31: 287–296

    PubMed  CAS  Google Scholar 

  80. Rahman R (1968) A review of treatment of 176 schizophrenic patients in the mental hospital Pabna. BrJ Psychiatry 114: 775–777

    CAS  Google Scholar 

  81. Ray S D (1962) Relative efficacy of ECT and CPZ in schizophrenia. Journal of the Indian Medical Association 38: 332–333

    PubMed  CAS  Google Scholar 

  82. Sackeim H A, Prudic J, Devanand D P, Decina P, Kerr B, Malitz S (1990) The impact of medication resistance and continuation pharmacotherapy on relapse following response to electroconvulsive therapy in major depression. J CI in Psychopharmacol 10: 96–104

    CAS  Google Scholar 

  83. Sackeim H A, Prudic J, Devanand D P, Nobler M S, Lisanby S H, Peyser S, Fitzsimons L, Moody B J, Clark J (2000) A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities. Arch Gen Psychiatry 57: 425–434

    PubMed  CAS  Google Scholar 

  84. Safferman A Z, Munne R (1992) Combining Clozapine with ECT. ConvulsTher 8: 141–143

    Google Scholar 

  85. Sajatovic M, Meltzer H Y (1993) The Effect of Short-Term Electroconvulsive Treatment Plus Neuroleptics in Treatment-Resistant Schizophrenia and Schizoaffective Disorder. Convuls Ther 9: 167–175

    PubMed  Google Scholar 

  86. Sauer H, Koehler K G, Fünfgeld E W (1985) Folgen unterlassener Elektrokrampftherapie. Nervenarzt 56: 150–152

    PubMed  CAS  Google Scholar 

  87. Schiele B C, Schneider R A (1949) The selective use of electroconvulsive therapy in manic patients. Dis New Syst 10: 291–297

    CAS  Google Scholar 

  88. Selvan C P, Mayur P M, Gangadhar B N, Janakiramaiah N, Subbakrishna D K, Murali N (1999) Comparison of the therapeutic efficacy of ECT and imipramin: a randomized controlled trial. Indian J Psychiatry 41: 228–235

    PubMed  CAS  Google Scholar 

  89. Small J G, Klapper M H, Kellams J J, Miller M J, Milstein V, Sharpley P H, Small I F (1988) Electroconvulsive therapy compared with lithium in the management of manic states. Arch Gen Psychiatry 45: 727–732

    PubMed  CAS  Google Scholar 

  90. Smith K, Surphlis W R P, Gynther M D, Shimkunas A (1967) ECT-chlorpromazine and chlorpromazine compared in the treatment of schizophrenia. Journal of Nervous and Mental Disease 144: 284–290

    Google Scholar 

  91. Spitzer R L, Endicott J, Robins E (1978) Research Diagnostic Criteria: Rationale and Reliability. Arch Gen Psychiatry 35: 773–782

    Google Scholar 

  92. Stromgren L S (1990) Frequency of ECT Treatments. Convuls Ther 6: 317–318

    PubMed  Google Scholar 

  93. Taylor P, Fleminger J J (1980) ECT for schizophrenia. Lancet 1: 1380–1382

    PubMed  CAS  Google Scholar 

  94. Thomas J, Reddy B (1982) The treatment of mania: a retrospective evaluation of the effects of ECT, chlorpromazine and lithium. J Affect Disord 4: 85–92

    PubMed  CAS  Google Scholar 

  95. Ungvari G, Bitter I, Czobor P, Vitrai J, Petho B (1981) [The role of high-dosage neuroleptic therapy and electroshock in the treatment of the acute phase of schizophrenia]. Psychiatr Neurol Med Psycho) (Leipz) 33: 458–463

    Google Scholar 

  96. West E D (1981) Electric convulsion therapy in depression: a double-blind controlled trial. Br Med J (Clin Res Ed) 282: 355–357

    CAS  Google Scholar 

  97. Abrams R (2002) Electroconvulsive therapy. 4th edition. Oxford University Press

    Google Scholar 

  98. Abrams R, Swartz CM, Vedak C (1991) Antidepressant effects of high dose right unilateral electroconvulsive therapy. Arch Gen Psychiatry 48: 746–748

    PubMed  CAS  Google Scholar 

  99. American Psychiatric Association (2001) Electroconvulsive therapy. Recommendations for treatment, training and priviliging, 2nd edition. Washington DC

    Google Scholar 

  100. Beale MD, Kellner CH, Pritchett JT, Bernstein HJ, Burns CM, Knapp R(1994) Stimulus Dose Titration in ECT: a 2-year clinical experience. Convuls Ther 10(2): 171–176

    Google Scholar 

  101. Bailine SH, Rifkin A, Kayne E (2000) Comparison of bifrontal and bitemporal ECT for major depression. Am J Psychiatry 157: 121–123

    PubMed  CAS  Google Scholar 

  102. Boylan LS, Haskett RF, Mulsant BH (2000) Determinants of seizure threshold in ECT: benzodiazepine use, anaesthetic dosage and other factors. J ECT 16: 3–18

    PubMed  CAS  Google Scholar 

  103. Cerletti U, Bini L (1938) Un nuevo metodo di shockterapie „L ‘elettroshock“. Bollettino Accademia Medica Roma 64: 136–138

    Google Scholar 

  104. Coffey CE, Lucke J, Weiner RD, Krystal AD, Ague M (1995) Seizure threshold in Electroconvulsive therapy: II: The anticonvulsant Effect of ECT. Biol Psychiatry 37: 777–788

    Google Scholar 

  105. Delva NJ, Brunet D, Hawken ER (2000) Characteristics of responders and nonresponders to brief-pulse right unilateral ECT in a controlled clinical trial. J ECT 17: 118–123

    Google Scholar 

  106. Folkerts H (1996) The ictal EEG as a marker for the efficacy of ECT. Eur Arch Psychiatry Clin Neurosci 246: 155–164

    PubMed  CAS  Google Scholar 

  107. Folkerts H (1997) Elektrokrampftherapie — ein praktischer Leitfaden für die Klinik. Enke, Stuttgart

    Google Scholar 

  108. Folkerts H (1999) Elektrokrampftherapie — Monitoring, Effektivität and pathischer Aspekt. Monographien aus dem Gesamtgebiet der Psychiatrie. Steinkopff, Darmstadt

    Google Scholar 

  109. Frey R, Heiden A, Scharfetter J (2001) Inverse relation between stimulus intensity and seizure duration: implications for treatment procedures. J ECT 17: 102–108

    PubMed  CAS  Google Scholar 

  110. Kirstein L, Ottosson JO (1960) Experimental studies of electroencephalographic changes following electroconvulsive therapy. Acta psychiatrica Scand 145: 49 — 65

    Google Scholar 

  111. Krystal AD, Weiner RD, Coffey CE, Smith P, Arias R, Moffet E (1992) EEG evidence of more intense seizure activity with bilateral ECT. Biol Psychiatry 31: 617–621

    PubMed  CAS  Google Scholar 

  112. Letemendia JF, Delva NJ, Rodenberg M, Lawson JS, Inglis J, Waldron JJ, Lywood DW (1993) Therapeutic avantage of bifrontal electrode placement in ECT. Psychol Med 23: 349–360

    PubMed  CAS  Google Scholar 

  113. Lerer B, Shapira B, Calev A, Tubi N, Drexler H, Kindler S, Lidsky D, Schwartz JE (1995) Antidepressant and Cognitive Effects of Twice-versus Three-Times-Weekly ECT. Am J Psychiatry 152: 564–570

    PubMed  CAS  Google Scholar 

  114. Maletzky BM (1978) Seizure duration and clinical effect in electroconvulsive therapy. Compr Psychiatry 19: 541–550

    PubMed  CAS  Google Scholar 

  115. McCall WV, Farah BA (1995) Greater ictal EEG regularity during RUL ECT is associated with greater treatment efficacy. Convuls Ther 11 (1): 69–75

    Google Scholar 

  116. McCall WV, Reboussin DM, Weiner RD (2000)Titrated moderately suprathreshold vs. fixed high-dose right unilateral ECT. Arch Gen Psych 57: 438–444

    Google Scholar 

  117. von Meduna L (1937) Die Konvulsionstherapie der Schizophrenie. C. Marhold Verlagsbuchhandllung, Halle

    Google Scholar 

  118. Nobler MS, Sackeim HA, Solomou M, Luber B, Devanand DP, Prudic J (1993) EEG manifestations during ECT: effects of electrode placement and stimulus intensity. Biol Psychiatry 34: 321 —330

    Google Scholar 

  119. Nobler MS, Luber B, Moeller JR (2000) Quantitative EEG during seizures induced by electroconvulsive therapy: relations to treatment modality and clinical features. J ECT 16: 1–21

    Google Scholar 

  120. Ottosson JO (1960) Effect of lidocaine on the seizure discharge in electroconvulsive therapy. Acta psychiatrica Scand [Suppl] 145: 7–32

    Google Scholar 

  121. Ottosson JO (1962) Seizure characteristics and therapeutic efficacy in electroconvulsive therapy: an analysis of the antidepressive efficacy of grand mal and lidocaine-modified seizures. J Nery Ment Dis 135: 239–251

    CAS  Google Scholar 

  122. Pettinati HM, Stephens RN, Willis KM, Robin S (1990) Evidence of less improvement in depression in patients taking benzodiazepine during unilateral ECT. Am J Psychiatry 147: 1029–1035

    PubMed  CAS  Google Scholar 

  123. Pettinati HM, Tamburello BA, Ruetsch CR, Kaplan FN (1994) Patients attitudes towards ECT. Psychopharmacol Bull 30: 471–475

    PubMed  CAS  Google Scholar 

  124. Petrides G, Kellner C, Knapp R (2000) Can ictal EEG indices predict response to ECT ?[poster] NCDEU meeting

    Google Scholar 

  125. Prudic J, Peyser S, Sackeim HA (2000) Subjective memory complaints. J ECT 16: 121–132

    PubMed  CAS  Google Scholar 

  126. Sackeim HA, Decina P, Kanzler M, Kerr B, Malitz S (1987a) Effects of electrode placement on the efficacy of titrated, low-dose ECT. Am J Psychiatry 144 /11: 1449–1455

    PubMed  CAS  Google Scholar 

  127. Sackeim HA, Decina P, Portnoy S (1987b) Studies of dosage, seizure threshold, and seizure duration in ECT. Biol Psychiatry 22 /3: 249–268

    PubMed  CAS  Google Scholar 

  128. Sackeim HA, Decina P, Prohovnik I, Malitz S (1987c) Seizure threshold in electroconvulsive therapy: effects of sex, age, electrode placement and number of treatments. Arch Gen Psychiatry 44: 355–360

    PubMed  CAS  Google Scholar 

  129. Sackeim HA, Devanand DP, Prudic J (1991) Stimulus intensity, seizure threshold and seizure duration: impact on the efficacy and safety of ECT. Psychiatric Clin North Am 14: 803–844

    CAS  Google Scholar 

  130. Sackeim HA, Prudic J, Devanand DP (1993) Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. N Engl J Med 328: 839–846

    PubMed  CAS  Google Scholar 

  131. Sackeim HA, Prudic J, Devanand DP (2000) A prospective randomized double-blind comparison of bilateral and unilateral ECT at different stimulus intensities. Arch Gen Psych 57: 425–434

    CAS  Google Scholar 

  132. Sackeim HA Prudic J, Nobler MS (2001) Ultra-brief pulse ECT and the affective and cognitive consequences of ECT. J ECT 17: 75

    Google Scholar 

  133. ScottAIF, Boddy H (2000)The effect of repeated bilateral ECT on seizure threshold. J ECT 16: 244–2251

    Google Scholar 

  134. Shapira B, Lidsky D, Gorfine M, Lerer B (1996) ECT and resistant depression: clinical implications of seizure threshold. J Clin Psychiatry 57: 328–336

    Google Scholar 

  135. Swartz CM, Larson G (1986) Generalization of the effects of unilateral and bilateral ECT. Am J Psychiatry 143 /8: 1040–1041

    PubMed  CAS  Google Scholar 

  136. Ulett GA, Smith K, Gleser G (1956) Evaluation of convulsive therapy and subconvulsive therapy shock therapies utilizing a control group. Am J Psychiatry 112: 795–802

    PubMed  CAS  Google Scholar 

  137. Abrams R (2000) Electroconvulsive therapy requires higher dosage levels. Arch Gen Psychiatry 57: 445–446

    PubMed  CAS  Google Scholar 

  138. Altar CA (1999) Neurotrophins and depression. TiPS 20: 59–61

    PubMed  CAS  Google Scholar 

  139. Andrade C, Sudha S (2000) Electroconvulsive therapy and the alpha-2 noradrenergic receptor: implications of treatment schedule effects. J ECT 16: 268–78

    PubMed  CAS  Google Scholar 

  140. Angelucci F, Aloe L, Jimenez-Vasquez P, MatheAA (2002) Electroconvulsive stimuli alter the regional concentration of nery growth factor, brain-derived neurotrophic factor, and glial cell derived neurotrophic factor in adult rat brain. J ECT 18: 138–143

    Google Scholar 

  141. Benninghoff J, Schmitt A, Mössner R, Lesch KP (2002) When cel Is become depressed: focus on neural stem cells in novel treatment strategies against depression. J Neural Transm 109: 947–962

    PubMed  CAS  Google Scholar 

  142. BolwigTG, Hertz MM, Paulson OB, Spotoft H, Rafaelsen OJ (1977) The permeability of the blood-brain-barrier during electrically induced seizures in man. Eur J CI in Invest 7: 87–93

    Google Scholar 

  143. Botwig TG, Woldbye DPD, Mikkelsen JD (1999) Electroconvulsive therapy as an Anti-convulsant: a possible role of neuropeptideY ( NPY ). J ECT 15: 93–101

    Google Scholar 

  144. Boylan LS, Devanand DP, Lisanby SH, Nobler MS, Prudic j, Sackeim HA (2001) Focal prefrontal seizures induced by bilateral ECT. J ECT 17: 175–179

    PubMed  CAS  Google Scholar 

  145. Butler MO, Morinobu S, Duman RS (1993) Chronic electroconvulsive seizures increase the expression of serotonin2 receptor mRNA in rat frontal cortex. Neurochem 61: 12701276

    Google Scholar 

  146. Chen J, Kelz MB, Hope BT, Nakabeppu Y, Nestler EJ (1997) Chronic Fos-related antigens: stable variants of AFosB induced in brain by chronic treatment. J Neurosci 17: 4933–4941

    PubMed  CAS  Google Scholar 

  147. Chen J, ZhangY, Kelz MB, Steffen C, Ang ES, Zeng L, Nestler EJ (2000) Induction of cyclin dependent kinase 5 in the hippocampus by chronic electroconvulsive seizures: role of AFosB. J Neurosci 20: 8965–8971

    CAS  Google Scholar 

  148. Devanand DP, Shapira B, Petty F, Kramer G, Fitzsimons L, Lerer B, Sackeim HA (1995) Effects of electroconvulsive therapy on plasma GABA. Convuls Ther 11: 3–13

    PubMed  CAS  Google Scholar 

  149. Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54: 597–606

    PubMed  CAS  Google Scholar 

  150. Duman RS, Vaidya VA (1998) Molecular and cellular actions of chronic electroconvulsive seizures. J ECT 14: 181–193

    PubMed  CAS  Google Scholar 

  151. Duncan R (1992) Epilepsy, cerebral blood flow and cerebral metabolic rate. Cerebrovasc. Brain Metab Rev 4: 105–121

    PubMed  CAS  Google Scholar 

  152. Ende G, Braus DF, Walter S, Weber-Fahr W, Henn FA (2000) The hippocampus in patients treated with electroconvulsive therapy. Arch Gen Psychiatry 57: 937–943

    PubMed  CAS  Google Scholar 

  153. Fink M (1990) How does ECT work? Neuropsychopharmacol 3: 77–82

    Google Scholar 

  154. Fink M (1993) The next challenge: the mode of action of ECT. Convuls Ther 9: 192–197

    Google Scholar 

  155. Fink M (2001) Convulsive Therapy: a review of the first 55 years. J Affect Dis 63: 1–15

    PubMed  CAS  Google Scholar 

  156. Finkbeiner S (2000) Calcium regulation of the brain-derived neurotrophic factor gene. Cell Mol Life Sci 57: 394–401

    PubMed  CAS  Google Scholar 

  157. Fochtmann LJ, Cruciani R, Aiso M, Potter WZ (1989) Chronic electroconvulsive shock increases D1-receptor binding in rat substantia nigra. Eur J Pharmacol 167: 305–306

    PubMed  CAS  Google Scholar 

  158. Fochtmann LJ (1994a) Animal studies of electroconvulsive therapy: foundations of future research. Psychopharmacol Bull 30: 321–444

    PubMed  CAS  Google Scholar 

  159. Fochtmann LJ (1994b) What do rodents and test tubes teach us about ECT. Convuls Ther 10: 287–297

    PubMed  CAS  Google Scholar 

  160. Fochtmann LJ (1998) Genetic approaches to the neurobiology of electroconvulsive therapy. J ECT 14: 206–219

    PubMed  CAS  Google Scholar 

  161. Garcia-Garcia L, Llewellyn-Jones V, Fernandez-Fernandez I, Fuentes JA, Manzanares J (1998) Acute and repeated ECS treatment increases CRF, POMC and PENK gene expression in selected regions of the rat hypothalamus. Neuroreport 9: 73–77

    Google Scholar 

  162. George MS, Lisanby SH, Sackheim HA (1999)Transcranial magnetic stimulation, applications in Neuropsychiatry. Arch Gen Psychiatry 56: 300–311

    Google Scholar 

  163. Gur E, Dremencov E, Garcia F, Van de Kar LD, Lerer B, Newman ME (2002) Functional effects of chronic electroconvulsive shock on serotonergic 5-HT1 A and 5-HT1 B receptor activity in rat hippocampus and hypothalamus. Brain Res 952: 52–60

    PubMed  CAS  Google Scholar 

  164. Hellsten J, Wennstrom M, Mohapel P, Ekdahl CT, Bengzon J, Tingstrom A (2002) Electroconvulsive seizures increase hippocampal neurogenesis after chronic corticosterone treatment. Eur J Neurosci 16: 283–90

    PubMed  Google Scholar 

  165. Hope BT, Kelz MB, Duman RS, Nestler EJ (1994) Chronic electroconvulsive seizure (ECS) treatment results in expression of a long-lasting AP-1 complex in brain with altered composition and characteristics. J Neurosci 14: 4318–28

    PubMed  CAS  Google Scholar 

  166. Hosoda K, Duman RS (1993) Regulation of ß,-adrenergic receptor mRNA and ligand binding by antidepressant treatments and norepinephrine depletion in rat frontal cortex. J Neurochem 60: 1335–1343

    PubMed  CAS  Google Scholar 

  167. Ishihara K, Sasa M (2001) Potentiation of 5-HT(3) receptor functions in the hippocampal CA1 region of rats following repeated electroconvulsive shock treatments. Neurosci Lett 6: 37–40

    Google Scholar 

  168. Kondratyev A, Sahibzada N, Gale K (2001) Electroconvulsive shock exposure prevents neuronal apoptosis after kainic.acid evoked status epilepticus. Brain Res Mol Brain Res 91: 1–13

    PubMed  CAS  Google Scholar 

  169. Kondratyev A, Ved R, Gale K (2001) The effects of repeated minimal electroconvulsive shoch exposure on levels of mRNA encoding fibroblast growth factor-2 and nery growth factor in limbic regions. Neurosci 114: 411–416

    Google Scholar 

  170. KooYJ, Kim SJ, Jeon SH, Kim SR, Kang UG, Park JB, Kim YS (2002) Electroconvulsive shoch increases the phosphorylation of amphiphysin Il in the rat cerebellum. Neurosci Lett 330: 135–138

    Google Scholar 

  171. Lerer B (1998) Editorial: The neurobiology of ECT: The road taken. J ECT 14: 149–152

    PubMed  CAS  Google Scholar 

  172. Lerer B (1999) Editorial: The neurobiology of ECT: The road ahead. J ECT 15: 1–4

    PubMed  CAS  Google Scholar 

  173. Lindefors N, Brodin E, Metsis M (1995) Spatiotemporal selective effects on brain-derived neurotrophic factor and TrkB messenger RNA in rat hippocampus by electroconvulsive shock. Neurosci 65: 661–670

    CAS  Google Scholar 

  174. Ma XM, Mains RE, Eipper BA (2002) Plasticity in the hippocampal peptidergic systems induced by repeated electroconvulsive shock. Neuropsychopharmacol 27: 55–71

    CAS  Google Scholar 

  175. MadhavTR, Pei Q, Grahame-Smith DG, ZetterstromTS (2000) Repeated electroconvulsive shock. Neurosci 97: 677–83

    Google Scholar 

  176. Mann JJ (1998) Neurobiological correlates of the antidepressant action of electroconvulsive therapy. J ECT 14: 172–180

    PubMed  CAS  Google Scholar 

  177. Markianos M, Hatzimanolis J, Lykouras L (2002) Relationship between prolactin responses to ECT and dopaminergic and serotonergic responsivity in depressed patients. Eur Arch Psychiatry Clin Neurosci 252: 166–171

    PubMed  Google Scholar 

  178. Mathe AA (1999) Neuropeptides and electroconvulsive treatment. J ECT 15: 60–75

    PubMed  CAS  Google Scholar 

  179. Metsis M, TimmuskT, Arenas E, Perrson H (1993) Differential usage of multiple brain-derived neurotrophic factor promotors in the rat brain following neuronal activation. Proc Natl Acad Sci USA 90: 8802–8806

    CAS  Google Scholar 

  180. Mongeau R, Blier P, de Montigny C (1997) The serotonergic and noradrenergic systems of the hippocampus: their interactions and the effects of antidepressant treatment. Brain Res Rev 23: 145–195

    PubMed  CAS  Google Scholar 

  181. Morinobu S, NibuyaM, Duman S (1995) Chronic antidepressant treatment downregulates the induction of c-fos mRNA in response to acute stress in rat frontal cortex. Neuropsychopharmacol 12: 221–228

    CAS  Google Scholar 

  182. Murray K, Wood P, Rosasco C, lsackson PJ (1996) A metabotropic glutamate receptor agonist regulates neurotrophin messenger RNA in rat forebrain. Neurosci 70: 617–630

    CAS  Google Scholar 

  183. Naylor P, Stewart CA, Wright SR, Pearson RCA, Reid IC (1996) Repeated ECS induces GIuR1 mRNA but not NMDAR1 A-G mRNA in the rat hippocampus. Mol Brain Res 35: 349–353

    PubMed  CAS  Google Scholar 

  184. Nestler EJ, McMahon A, Sabban EL, Tallman JF, Duman RS (1990) Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus. Proc Natl Acad Sci USA 87: 7522–7526

    PubMed  CAS  Google Scholar 

  185. Newmann ME, Gur E, Shapira B, Lerer B (1998) Neurochemical mechanisms of action of ECS: evidence from in vivo studies. J ECT 14: 153–171

    Google Scholar 

  186. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and TrkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatment. J Neurosci 15: 75397547

    Google Scholar 

  187. Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein ( CREB) in rat hippocampus. J Neurosci 16: 2365–2372

    Google Scholar 

  188. Nobler MS, Sackeim HA (1998) Mechanisms of action of electroconvulsive therapy: functional brain imaging studies. Psychiatric Annals 28: 23–29

    Google Scholar 

  189. Paul IA, Duncan GE, Mueller RA, Hong J-S, Breese GR (1991) Neural adaption in response to chronic imipramin and electroconvulsive shock: evidence for separate mechanisms. Eur J Pharmacol 205: 135–143

    PubMed  CAS  Google Scholar 

  190. Petrie RXA, Reid IC, Steward CA (2000) The N-methyl-D-aspartate receptor, synaptic plasticity, and depressive disorder. A critical review. Pharmacol Therapeut 87: 11–25

    Google Scholar 

  191. Pilc A, Branski P, Palucha A, Aronowski J (1999) The effect of prolonged imipramine and electroconvulsive shock treatment om calcium/calmodulin-dependent protein kinase II in the hippocampus of rat brain. Neuropharmacol 38: 597–603

    CAS  Google Scholar 

  192. Post RM, Puntman F, Contel NR, Goldman B (1984) Electroconvulsive seizures inhibit amygdala kindling: implications for mechanism of action in affective illness. Epilepsia 25: 234–239

    PubMed  CAS  Google Scholar 

  193. Sackeim HA (1994) Central issues regarding the mechanism of action of electroconvulsive therapy: directions for future research. Psychopharmacol Bull 30: 501–521

    PubMed  CAS  Google Scholar 

  194. Sackeim HA, Devanand DP, Nobler MS (1995) Electroconvulsive Therapy. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, NY

    Google Scholar 

  195. Sackeim HA (1999) The anticonvulsant hypothesis of the mechanism of action of ECT. J ECT 15: 5–26

    PubMed  CAS  Google Scholar 

  196. Sattin A, Pekary AE, Lloyd RL (1994) TRH gene products are implicated in the antidepressant mechanisms of seizures. Ann N Y Acad Sci 739: 135–153

    PubMed  CAS  Google Scholar 

  197. Sattin A (1999) The role of TRH and related peptides in the mechanism of action of ECT. J ECT 15: 76–92

    PubMed  CAS  Google Scholar 

  198. Scott Al, Douglas RH, Whitfield A, Kendall RE (1990) Time course of cerebral magnetic resonance changes after electroconvulsive therapy. Br J Psychiatry 156: 551–553

    Google Scholar 

  199. Seo DO, Shin CY, Seung CH, Han SY, Ko KH (1999) Effects of chronic electroconvulsive shock on the expression of beta-adrenergic receptors in rat brain: immunological study. Biochem Mol Biol Int 47: 195–203

    PubMed  CAS  Google Scholar 

  200. Shen H, Numachi Y, Yoshida S, Toda S, Awata S, Matsuoka H, Sato M (2001) Electroconvulsive shock regulates serotonin transporter mRNA expression in rat raphe nucleus. Psychiatr CI in Neurosci 55: 75–77

    CAS  Google Scholar 

  201. Smith MA, Zhang LX, Lyons WE, Mamounas LA (1997) Anterograde transport of endogenous brain-derived neurotrophic factor in hippocampal mossy fibers. Neuroreport 8: 1829–1834

    PubMed  CAS  Google Scholar 

  202. Soares JC, Mann JJ (1997)The anatomy of mood disorders — review of structural neuroimmaging studies. Biol Psychiatry 41: 86–106

    Google Scholar 

  203. Stringer JL, Guyenet PG (1983) Elimination of lomg-term potentiation in the hippocampus by phencyclidine and ketamine. Brain Res 258: 159–164

    CAS  Google Scholar 

  204. Suppes T, Webb A, Carmody T, Gordon E, Gutierrez-Esteinou R, Hudson JL, Pope HG jun (1996) Is postictal electrical silence a predictor of response to electroconvulsive therapy? J Affect Disord 41: 55–58

    PubMed  CAS  Google Scholar 

  205. Szuba MP, O’Reardon JP, Eavens DL (2000) Physiological effects of electroconvulsive therapy and transcranial magnetic stimulation in major depression. Depr Anxiety 12: 170–177

    CAS  Google Scholar 

  206. Toyooka K, Asama K, Watanabe Y, Muratake T, Takahashi M, Someya T, Nawa H (2002) Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatr Res 110: 249–257

    CAS  Google Scholar 

  207. VaidyaVA, Marek GJ, Aghajanian GK, Duman RS (1997) 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 17: 2785–2795

    Google Scholar 

  208. VaidyaVA, Siuciak JA, Du F, Duman RS (1999) Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures. Neurosci 89: 157–66

    Google Scholar 

  209. Watkins CJ, Pei Q, Newberry NR (1998) Differential effects of electroconvulsive shock on the glutamate receptor mRNAs for NR2A, NR2B and mGluR5b. Brain Res Mol Brain Res 61: 108–113

    PubMed  CAS  Google Scholar 

  210. Waziri R, Baruah S, Arndt S, Baumert K, Cooney J, Christensen L (1996) Psychosis and vulnerability to ECT-induced seizures. Psychiatr Res 62: 191–201

    CAS  Google Scholar 

  211. Weinberger DR (1993) A connectionist approach to the prefrontal cortex. J Neuropsychiatry Clin Neurosci 5: 241–253

    PubMed  CAS  Google Scholar 

  212. Wetmore C, Olson L, Bean AJ (1994) Regulation of brain-derived neurotrophic factor ( BDNF) expression and release from hippocampal neurons is mediated by non-NMDA type glutamate receptors. J Neurosci 14: 1688–1700

    Google Scholar 

  213. Winston SM, Hayward MD, Nestler EJ, Duman RS (1990) Chronic electroconvulsive seizure down-regulate expression of the immediate-early genes c-fos and c-jun in rat cerebral cortex. J Neurochem 54: 1920–1925

    PubMed  CAS  Google Scholar 

  214. Wong ML, Smith MA, Licinio J, Doi SQ, Weiss SR, Post RM, Gold PW (1993) Differential effect of kindling and electrically induced seizures on a glutamate receptor (GIuR1) gene expression. Epilepsy Res 14: 221–227

    PubMed  CAS  Google Scholar 

  215. Woods BT, Chiu TM (1990) In vivo 1H spectroscopy of the human brain following electroconvulsive therapy. Ann Neurol 28: 745–749

    PubMed  CAS  Google Scholar 

  216. Zafra F, Lindholm D, Castren E, Hartikka J, Thoenen H (1992) Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci 12: 4793–4799

    PubMed  CAS  Google Scholar 

  217. Bergsholm P, Larsen JL, Rosendahl K, Holsten F (1989) Electroconvulsive therapy and cerebral computed tomography. A prospective study. Acta Psychiatr Scand 80: 566–572

    Google Scholar 

  218. BolwigTG, Hertz MM, Paulson OB, Spotoft H, Rafaelsen OJ (1977) The permeability of the blood-brain barrier during electrically induced seizures in man. Eur J CI in Invest 7: 87–93

    Google Scholar 

  219. Bonne O, Krausz Y, Shapira B, Bocher M, Karger H, Gorfine M, Chisin R, Lerer B (1996) Increased cerebral blood flow in depressed patients responding to electroconvulsive therapy. J Nucl Med 37: 1075–1080

    PubMed  CAS  Google Scholar 

  220. Calloway SP, Dolan RJ, Jacoby RJ, Levy R (1981) ECT and cerebral atrophy. A computed tomographic study. Acta Psych iatr Scand 64: 442–445

    Google Scholar 

  221. Coffey CE, Figiel GS, Djang WT, Sullivan DC, Herfkens RJ, Weiner RD (1988) Effects of ECT on brain structure: a pilot prospective magnetic resonance imaging study. Am J Psychiatry 145: 701–706

    PubMed  CAS  Google Scholar 

  222. Coffey CE, Weiner RD, Djang WT, Figiel GS, Soady SA, Patterson Li, Holt PD, Spritzer CE, Wilkinson WE (1991) Brain anatomic effects of electroconvulsive therapy. A prospective magnetic resonance imaging study. Arch Gen Psychiatry 48: 1013–1021

    Google Scholar 

  223. Dequardo JR, Tomori O, Brunberg JA, Tandon R (1997) Does neuroanatomy predict ECT response? Prog Neuropsychopharmacol Biol Psychiatry 21: 1339–1352

    PubMed  CAS  Google Scholar 

  224. Devanand DP, Dwork AJ, Hutchinson ER, BolwigTG, Sackeim HA (1994) Does ECT alter brain structure? Am J Psychiatry 1994 151: 957–970

    Google Scholar 

  225. Diehl DJ, Keshavan MS, Kanal E, Nebes RD, NicholsTE, Gillen JS (1994) Post-ECT increases in MRI regional T2 relaxation times and their relationship to cognitive side effects: a pilot study. Psychiatry Res 54: 177–184

    CAS  Google Scholar 

  226. Elizagarate E, Cortes J, Gonzalez Pinto A, Gutierrez M, Alonso I, Alcorta P, Ramirez M, de Heredia JL, Figuerido JL (2001) Study of the influence of electroconvulsive therapy on the regional cerebral blood flow by HMPAO-SPECT. J Affect Disord 65: 55–59

    PubMed  CAS  Google Scholar 

  227. Escobar R, Rios A, Montoya ID, Lopera F, Ramos D, Carvajal C, Constain G, Gutierrez JE, Vargas S, Herrera CP (2000) Clinical and cerebral blood flow changes in catatonic patients treated with ECT. J Psychosom Res 49: 423–429

    PubMed  CAS  Google Scholar 

  228. Figiel GS, Coffey CE, Djang WT, Hoffman G Jr, Doraiswamy PM (1990) Brain magnetic resonance imaging findings in ECT-induced delirium. J Neuropsychiatry Clin Neurosci 2: 53–58

    PubMed  CAS  Google Scholar 

  229. Galynker II, Weiss J, Ongseng F, Finestone H (1997) ECT treatment and cerebral perfusion in Catatonia. J Nucl Med 38: 251–254

    PubMed  CAS  Google Scholar 

  230. Guze BH, Baxter LR Jr, Schwartz JM, Szuba MP, Liston EH (1991) Electroconvulsive Therapy and Brain Glucose Metabolism. ConvulsTher 7: 15–19

    Google Scholar 

  231. Hickie I, Scott E, Mitchell P, Wilhelm K, Austin MP, Bennett B (1995) Subcortical hyperintensities on magnetic resonance imaging: clinical correlates and prognostic significance in patients with severe depression. Biol Psychiatry 37: 151–160

    PubMed  CAS  Google Scholar 

  232. Kaplan HI, Sadock BJ (1997) Synopsis of psychiatry. 8th edition. Lippincott Williams and Wilkins, Philadelphia Balitmore New York London Buenos Aires Hong Konk Sydney Tokyo, 11151122

    Google Scholar 

  233. Kendell B, Pratt RT (1983) Brain damage and ECT. Br J Psychiatry 143: 99–100

    PubMed  CAS  Google Scholar 

  234. Kolbeinsson H, Arnaldsson OS, Petursson H, Skulason S (1986) Computed tomographic scans in ECT-patients. Acta Psychiatr Scand 73: 28–32

    PubMed  CAS  Google Scholar 

  235. Krystal AD, Weiner RD, Lindahl V, Massie R (2000)The development and retrospective testing on an electroencephalographic seizure quality-based stimulus dosing paradigm with ECT. J ECT 16: 338–349

    Google Scholar 

  236. Mander AJ, Whitfield A, Kean DM, Smith MA, Douglas RH, Kendell RE (1987) Cerebral and brain stem changes after ECT revealed by nuclear magnetic resonance imaging. Br J Psychiatry 151: 69–71

    PubMed  CAS  Google Scholar 

  237. Mervaala E, Kononen M, Fohr J, Husso-Saastamoinen M, Val konen-Korhonen M, Kuikka JT, Viinamaki H, Tammi AK, Ti ihonen J, Partanen J, Lehtonen J (2001) SPECT and neuropsychological performance in severe depression treated with ECT. J Affect Disord 66: 47–58

    PubMed  CAS  Google Scholar 

  238. MiloTJ, Kaufman GE, Barnes WE, Konopka LM, Crayton JW, Ringelstein JG, Shirazi PH (2001) Changes in regional cerebral blood flow after electroconvulsive therapy for depression. J ECT 17: 15–21

    Google Scholar 

  239. Nobler MS, Sackheim HA, Solomou M, Luber B, Devenand DP, Prudic J (1993) EEG manifestation during ECT: Effects of electrode placement and stimulus intensity. Biol Psychiatry 34: 321–330

    Google Scholar 

  240. Nobler MS, Teneback CC, Nahas Z, Bohning DE, Shastri A, Kozel FA, George MS (2000) Structural and functional neuroimaging of electroconvulsive therapy and transcranial magnetic stimulation. Depress Anxiety 12: 144–126

    PubMed  CAS  Google Scholar 

  241. Nobler MS, Oquendo MA, Kegeles LS, Malone KM, Campbell CC, Sackeim HA, Mann JJ (2001) Decreased regional brain metabolism after ect. Am J Psychiatry 158: 305–308

    PubMed  CAS  Google Scholar 

  242. Pande AC, Grunhaus LJ, Aisen AM, Haskett RF (1990) A preliminary magnetic resonance imaging study of ECT-treated depressed patients. Biol Psychiatry 27: 102–104

    PubMed  CAS  Google Scholar 

  243. Rosenberg R, Vorstrup S, Andersen A, Bo[wigTG (1988) Effect of ECT on Cerebral Blood Flow in Melancholia Assessed with SPECT. Convuls Ther 4: 62–73

    Google Scholar 

  244. Sackeim HA, Decina P, Prohovnik I, Malitz S, Resor SR (1983) Anticonvulsant and antidepressant properties of electroconvulsive therapy: a proposed mechanism of action. Biol Psychiatry 18: 1301–1310

    PubMed  CAS  Google Scholar 

  245. Sackheim HA, Devanand DP, Nobler MS (1995) Electroconvulsive therapy. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: The fourth generation of progress. Raven, New York, 1123–1141

    Google Scholar 

  246. Sandyk R, Pardeshi R (1990) The relationship between ECT nonresponsiveness and calcification of the pineal gland in bipolar patients. Int J Neurosci 54: 301–306

    PubMed  CAS  Google Scholar 

  247. Scott AI, Douglas RH, Whitfield A, Kendell RE (1990) Time course of cerebra; magnetic resonance changes after electroconvulsive therapy. Br J Psychiatry 156: 551–553

    PubMed  CAS  Google Scholar 

  248. Scott Al, Dougall N, Ross M, O’Carroll RE, Riddle W, Ebmeier KP, Goodwin GM (1994) Short-term effects of electroconvulsive treatment on the uptake of 99mTc-exametazime into brain in major depression shown with single photon emission tomography. J Affect Disord 30: 27–34

    Google Scholar 

  249. Silfverskiold P, Risberg J (1989) Regional cerebral blood flow in depression and mania. Arch Gen Psychiatry 46: 253–259

    PubMed  CAS  Google Scholar 

  250. Simpson S, Baldwin RC, Jackson A, Burns AS (1998) Is subcortical disease associated with a poor response to antidepressants? Neurological, neuropsychological and neuroradiological findings in late-life depression. Psychol Med 28: 1015–1026

    PubMed  CAS  Google Scholar 

  251. Steffens DC, Conway CR, Dombeck CB, Wagner HR, Tupler LA, Weiner RD (2001) Severity of subcortical gray matter hyperintensity predicts ECT response in geriatric depression. J ECT 17: 45–49

    PubMed  CAS  Google Scholar 

  252. Volkow ND, Bellar S, Mullani N, Jould L, Dewey S (1988) Effects of ElectroconvulsiveTherapy on Brain Glucose Metabolism: A Preliminary Study. Convuls Ther 4: 199–205

    Google Scholar 

  253. Guze BH, Baxter LR Jr, Schwartz JM, Szuba MP, Liston EH (1991) Electroconvulsive Therapy and Brain Glucose Metabolism. Convuls Ther 7: 15

    PubMed  Google Scholar 

  254. Barker AT, Jalinous R, Freeston IL (1985) Noninvasive magnetic stimulation of human motor cortex. Lancet ii: 1106–1107

    Google Scholar 

  255. Baxter LRJr, Schwartz JM, Phelps ME, et al (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46: 243–250

    Google Scholar 

  256. Belmaker RH, Grisaru N (1998) Magnetic stimulation of the brain in animal depression models responsive to ECS. J ECT 14: 194–205

    PubMed  CAS  Google Scholar 

  257. Ben-Shachar D, Belmaker RH, Grisaru N, Klein E (1997)Transcranial magnetic stimulation induces alterations in brain monoamines. J Neural Transm 104: 191–197

    Google Scholar 

  258. Ben-Shachar D, Gazawi H, Riboyad-Levin J, Klein E (1999) Chronic repetitive transcranial magnetic stimulation alters beta-adrenergic and 5-HT2 receptor characteristics in rat brain. Brain Res 816: 78–83

    PubMed  CAS  Google Scholar 

  259. Berman RM, Narasimhan M, Sanacora G, Miano AP, Hoffman RE, Hu XS, Charney DS, Boutros NN (2000) A randomized clinical trial of repetitive transcranial magnetic stimulation in the treatment of major depression. Biol Psychiatry 47: 332–337

    PubMed  CAS  Google Scholar 

  260. Boutros NN, Gueorguieva R, Hoffman RE, Oren DA, Feingold A, Berman RM (2002) Lack of a therapeutic effect of a 2-week sub-threshold transcranial magnetic stimulation course for treatment-resistant depression. Psychiatry Res 113: 245–254

    PubMed  Google Scholar 

  261. Brezun JM, Daszuta A (1999) Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 89: 999–1002

    PubMed  CAS  Google Scholar 

  262. BurtT, Lisanby SH, Sackheim HA (2002) Neuropsychiatric applications of transcranial magnetic stimulation: a meta analysis [In Process Citation]. Int J Neuropsychopharmacol 5: 73–103

    Google Scholar 

  263. Cohen E, Bernardo M, Masana J, Arrufat FJ, NavarroV, Valls-Solé J, BogetT, Barrantes N, Catarineu S, Font M, Lomena FJ (1999) Repetitive transcranial magnetic stimulation in the treatment of chronic negative schizophrenia: a pilot study. J Neurol Neurosurg Psychiatry 67: 129–130

    CAS  Google Scholar 

  264. Cohrs S, Tergau F, Riech S, Kastner S, Paulus W, Ziemann U, Ruther E, Hajak G (1998a) High-frequency repetitive transcranial magnetic stimulation delays rapid eye movement sleep. Neuroreport 9: 3439–3443

    PubMed  CAS  Google Scholar 

  265. Cohrs S, Tergau F, Riech S, Kastner S, Paulus W, Ziemann U, Rüther E, Hajak G (1998b) High-frequency repetitive transcranial magnetic stimulation delays rapid eye movement sleep. Neuroreport 9: 3439–3443

    PubMed  CAS  Google Scholar 

  266. Cohrs S, Tergau F, Korn J, Becker W, Hajak G (2001) Suprathreshold repetitive transcranial magnetic stimulation elevates thyroid-stimulating hormone in healthy male subjects. J Nery Ment Dis 189: 393–397

    CAS  Google Scholar 

  267. Conca A, Koppi S, Konig P, Swoboda E, Krecke N (1996)Transcranial magnetic stimulation: a novel antidepressive strategy? Neuropsychobiol 34: 204–207

    Google Scholar 

  268. Conca A, Konig P, Hausmann A (2000) Transcranial magnetic stimulation induces,pseudoabsence seizure’. Acta Psychiatr Scand 101: 246–248

    PubMed  CAS  Google Scholar 

  269. Counter SA (1993) Neurobiological effects of extensive transcranial electromagnetic stimulation in an animal model. Electroencephalogr Clin Neurophysiol 89: 341–348

    PubMed  CAS  Google Scholar 

  270. Crawley JN, Corwin RL (1994) Biological actions of cholecystokinin. Peptides 5: 731–755

    Google Scholar 

  271. Czéh B, Welt T, Fischer AK, Erhardt A, Schmitt W, Müller MB, Toschi N, Fuchs E, Keck ME (2002) Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: Effects on stress hormone levels and adult hippocampal neurogenesis. Biol Psychiatry 52: 1057–1065

    Google Scholar 

  272. D’Alonso P, Pujol J, Cardoner N, Benlloch L, Deus J, Menchon JM, Capdevila A, Vallejo J (2001) Right prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: a double-blind, placebo-controlled study. Am J Psychiatry 158: 1143–1145

    Google Scholar 

  273. Dannon PN, Grunhaus L (2001) Effect of electroconvulsive therapy in repetitive transcranial magnetic stimulation non-responder MDD patients: a preliminary study. IntJ Neuropsychopharmacol 4: 265–268

    CAS  Google Scholar 

  274. Dearing Martin J (1997) Mood effects of prefrontal repetitive high-frequency TMS in healthy volunteers. CNS Spectrums 2: 53–68

    Google Scholar 

  275. Dolberg OT, Schreiber S, Grunhaus L (2001)Transcranial magnetic stimulation-induced switch into mania: a report of two cases. Biol Psychiatry 49: 468–470

    Google Scholar 

  276. Drevets WC (2000) Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 126: 413–431

    PubMed  CAS  Google Scholar 

  277. Ella R, Zwanzger P, Stampfer R, Preuss U, Müller-Siecheneder F, Möller HJ, Padberg F (2002) Switch to mania after slow rTMS of the right prefrontal cortex. J Clin Psychiatry 63: 249

    PubMed  Google Scholar 

  278. Erfurth A, Michael N, Mostert Ch, Arolt V (2000) Euphoric Mania and Rapid Transcranial Magnetic Stimulation. Am J Psychiatry 157: 835–836

    PubMed  CAS  Google Scholar 

  279. Eschweiler GW, Wegerer C, Schiotter W, Spandl C, Stevens A, Bartels M, Buchkremer G (2000) Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression. Psychiatry Res 99: 161–172

    PubMed  CAS  Google Scholar 

  280. Eschweiler GW, Plewnia C, Bartels M (2001) Welche depressiven Patienten profitieren von präfrontaler transkranieller Magnetstimulation (rTMS)? Fortschr Neurol Psychiatr 69: 402–409

    PubMed  CAS  Google Scholar 

  281. Faraday M (1831) Effects on the production of electricity from magnetism. In: Faraday M, Williams LP (eds) Basic Books, New York, pp 531–540

    Google Scholar 

  282. Feldman RS, Meyer JS, Quenzer LF (1997) Principles of Neuropsychopharmacology. Sinauer, Mass: Sunderland

    Google Scholar 

  283. Figiel G, Epstein C, McDonald W, Amazon-Leece J, Figiel L, Saldivia A, Glover S (1998) The use of rapid-rate transcranial magnetic stimulation (rTMS) in refractory depressed patients. J Neuropsychiatry Clin Neurosci 10: 20–25

    PubMed  CAS  Google Scholar 

  284. Fleischmann A, ProIov K, Abarbanel J, Belmaker RH (1995)The effect of transcranial magnetic stimulation of rat brain on behavioral models of depression. Brain Research 699: 130–132

    Google Scholar 

  285. Fujiki M, Steward O (1997) High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS. Brain Res Mol Brain Res 44: 301–308

    PubMed  CAS  Google Scholar 

  286. Garcia-Toro M, Mayol A, Arnillas H, Capllonch I, Ibarra 0, Crespi M, Mico J, Lafau O, Lafuente L (2001 a) Modest adjunctive benefit with transcranial magnetic stimulation in medication-resistant depression. J Affect Disord 64: 271–275

    Google Scholar 

  287. Garcia-Toro M, Pascual-Leone A, Romera M, Gonzalez A, Mico J, Ibarra O, Arnillas H, Capl lonch I, Mayol A, Tormos JM (2001 b) Prefrontal repetitive transcranial magnetic stimulation as add on treatment in depression. J Neurol Neurosurg Psychiatry 71: 546–548

    Google Scholar 

  288. George MS, Wassermann EM, Williams WA, Callahan A, Ketter TA, Basser P, Hallett M, M PR (1995a) Daily left prefrontal repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport6: 1–6

    Google Scholar 

  289. George MS, Wassermann EM, Williams WA, Callahan A, KetterTA, Basser P, Hallett M, Post RM (1995b) Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport 6: 1853–1856

    PubMed  CAS  Google Scholar 

  290. George MS, Wassermann EM, Williams WA, Steppe) J, Pascual-Leone A, Basser P, Hallett M, Post RM (1996) Changes in mood and hormone levels after rapid-rate transcranial magnetic stimulation (rTMS) of the prefrontal cortex. J Neuropsychiatry Clin Neurosci 8: 172–180

    PubMed  CAS  Google Scholar 

  291. George MS, Speer AM, Wassermann EM, Kimbrell TA, William WA, Kellner CH, Risch SC, Stallings L, Post RM (1997a) Repetitive TMS as a probe of mood in health and disease. CNS Spectrums 2: 39–44

    CAS  Google Scholar 

  292. George MS, Wassermann EM, Kimbrell TA, LittleJT, Williams WE, Danielson AL, Greenberg BD, Hallett M, Post RM (1997b) Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: A placebo-controlled crossover trial. Am J Psychiatry 154: 1752–1756

    Google Scholar 

  293. George MS, Avery D, Nahas Z, Molloy M, Oliver NC, Risch SC, Arana GW (1999a) rTMS studies of mood and emotion. Electroencephalogr Clin Neurophysiol [Suppl] 51: 304–14: 304–314

    Google Scholar 

  294. George MS, Lisanby SH, Sackeim HA (1999b) Transcranial magnetic stimulation. Arch Gen Psychiatry 56: 300–311

    PubMed  CAS  Google Scholar 

  295. George MS, Nahas Z, Molloy M, Speer AM, Oliver NC, Li X-B, Arana GW, Risch SC, Ballenger JC (2000) A controlled trial of daily left prefrontal cortex TMS for treating depression. Biol Psychiatry 48: 962–970

    PubMed  CAS  Google Scholar 

  296. Grisaru N, YarovsIaysky U, Abarbanel J, LambergT, Belmaker RH (1994)Transcranial magnetic stimulation in depression and schizophrenia. Neuropsychopharmacology 4: 287–288

    Google Scholar 

  297. Grisaru N, Amir M, Cohern H, Kaplan Z (1998a) Effect ofTranscranial Magentic Stimulation in Posttraumatic Stress Disorder: A Preliminry Study. Biol Psychiatry 44: 52–55

    Google Scholar 

  298. Grisaru N, Chudakov 6,YarosIayskyY, Belmaker RH (1998b)Transcranial magnetic stimulation in mania: a controlled study. Am J Psychiatry 155: 1608–1610

    Google Scholar 

  299. Grisaru N, Bruno R, Pridmore S (2001) Effect on the emotions of healthy individuals of slow repetitive transcranial magnetic stimulation applied to the prefrontal cortex. J ECT 17: 184–189

    PubMed  CAS  Google Scholar 

  300. Greenberg BD, George MS, Dearing J, benjamin J, SchlaepferT, Alternuns M, Wassermann EM, Hallet M, Murphy DL (1997) Effect of prefrontal repetitive transcranial magnetic stimulation (rTMS) in obsessive-compulsive disorder: a pleliminary study. Am J Psychiatry 154: 867–869

    CAS  Google Scholar 

  301. Grunhaus L, Dannon PN, Schreiber S, Dolberg OH, Amiaz R, Ziv R, Lefkifker E (2000) Repetitive transcranial magnetic stimulation is as effective as electroconvulsive therapy in the treatment of nondelusional major depressive disorder: an open study. Biol Psychiatry 47: 314–324

    PubMed  CAS  Google Scholar 

  302. Grunhaus L, Schreiber S, Dolberg OT, Polak D, Dannon PN (2003) A randomized controlled comparison of electroconvulsive therapy and repetitive transcranial magnetic stimulation in severe and resistant nonpsychotic major depression. Biol Psychiatry 53: 324–331

    PubMed  Google Scholar 

  303. Gur E, Lerer B, Newman ME (1997) Chronic electroconvulsive shock and 5-HT autoreceptor activity in rat brain: an in vivo microdialysis study. J Neural Transm 104: 795–804

    PubMed  CAS  Google Scholar 

  304. Gur E, Lerer B, Dremencov E, Newman ME (2000) Chronic repetitive transcranial magnetic stimulation induces subsensitivity of presynaptic serotonergic autoreceptor activity in rat brain. Neuroreport 11: 2925–2929

    PubMed  CAS  Google Scholar 

  305. Hallett M (1996) Transcranial magnetic stimulation: a tool for mapping the central nervous system. Electroencephalogr clin Neurophysiol [Suppll 46: 43–51

    CAS  Google Scholar 

  306. Herwig U, Padberg F, Unger J, Spitzer M, Schonfeldt-Lecuona C (2001)Transcranial magnetic stimulation in therapy studies: examination of the reliability of „standard“ coil positioning by neuronavigation. Biol Psychiatry 50: 58–61

    Google Scholar 

  307. Hoffmann RE, Boutros N, Berman R, Krystal J, Charney D (1999) Transcranial magnetic stimulation of left temporoparietal cortex in three patients reporting halluzinated “voices”. Biol Psychiatry 46: 130–132

    Google Scholar 

  308. Hoffmann RE, Hawkins KA, Gueorguieva R, Boutros NN, Rachid F, Carroll K, Krystal JH (2003)Transcranial magnetic stimulation of left tempoparietal cortex and medication-resistant auditory halluzinations. Arch Gen Psychiatry 60: 49–56

    Google Scholar 

  309. Holsboer F, Barden N (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 17: 187–205

    PubMed  CAS  Google Scholar 

  310. Holsboer F (2001) Stress, hypercortism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 62: 77–91

    PubMed  CAS  Google Scholar 

  311. Höflich G, Kasper S, Hufnagel A, Ruhrmann S, Möller HJ (1993) Application of transcranial magnetic stimulation in treatment of drug-resistant major depression. Human Psychopharmacology 8: 361–365

    Google Scholar 

  312. Jacobs BL, Praag H, Gage FH (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5: 262–269

    PubMed  CAS  Google Scholar 

  313. Janicak PG, Dowd SM, Martis B, Alam D, Beedle D, Krasuski J, Strong MJ, Sharma R, Rosen C, Viana M (2002) Repetitive transcranial magnetic stimulation versus electroconvulsive therapy for major depression: Preliminary results of a randomized trial. Biol Psychiatry 51: 659–667

    Google Scholar 

  314. Jenkins J, Shajahan PM, Lappin JM, Ebmeier KP (2002) Right and left prefrontal transcranial magnetic stimulation at 1 Hz does not affect mood in healthy volunteers. BMC Psychiatry 2: 1

    PubMed  Google Scholar 

  315. Juckel G, Mendlin A, Jacobs BL (1999) Electrical stimulation of rat medial prefrontal cortex enhances forebrain serotonin output: implications for electroconvulsive therapy and trans-cranial magnetic stimulation in depression. Neuropsychopharmacology 21: 391–398

    PubMed  CAS  Google Scholar 

  316. Keck ME, Pijnappels M, Schubert M, Colombo G, Curt A, DietzV (1998) Stumbling reactions in man: influence of corticospinal input. Electroencephalogr Clin Neurophysiol 109: 215223

    Google Scholar 

  317. Keck ME, Engelmann M, Müller MB, Henniger MSH, Hermann B, Rupprecht R, Neumann ID, Toschi N, Landgraf R, Post A (2000a) Repetitive transcranial magnetic stimulation induces active coping strategies and attenuates the neuroendocrine stress response in rats. J Psychiatr Res 34: 265–276

    PubMed  CAS  Google Scholar 

  318. Keck ME, Hatzinger M, Wotjak CT, Holsboer F, Landgraf R, Neumann ID (2000b) Ageing alters intrahypothalamic release patterns of vasopressin and oxytocin in rats. Eur J Neuroscience 12: 1487–1494

    CAS  Google Scholar 

  319. Keck ME, Sillaber I, Ebner K, Welt T, Toschi N, Kaehler ST, Singewald N, Philippu A, Elbel GK, Wotjak CT, Holsboer F, Landgraf R, Engelmann M (2000c) Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci 12: 3713–3720

    PubMed  CAS  Google Scholar 

  320. Keck ME, Holsboer F (2001 a) Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 22: 835–844

    Google Scholar 

  321. Keck ME, Welt T, Post A, Müller MB, Toschi N, Wigger A, Landgraf R, Holsboer F, Engelmann M (2001 b) Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects. Neuropsychopharmacology24:337–349

    Google Scholar 

  322. Keck ME, Welt T, Erhardt A, Müller MB, Toschi N, Holsboer F, Sillaber I (2002a) Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology 43: 101–109

    PubMed  CAS  Google Scholar 

  323. Keck ME, Wigger A, Welt T, Müller MB, Gesing A, Reul JMHM, Holsboer F, Landgraf R, Neumann ID (2002b) Vasopressin mediates the response of the combined dexamethasone/ CRH test in hyper-anxious rats: implications for pathogenesis of affective disorders. Neuropsychopharmacology 26: 94–105

    PubMed  CAS  Google Scholar 

  324. Kimbrell TA, Little JT, Dunn RT, Frye MA, Greenberg BD, Wassermann EM, Repella JD, Danielson AL, Willis MW, Benson BE, Speer AM, Osuch E, George MS, Post RM (1999) Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol Psychiatry 46: 1603–1613

    PubMed  CAS  Google Scholar 

  325. Klein E, Kreinin I, Chistyakov A, Koren D, Mecz L, Marmur S, Ben-Shachar D, Feinsod M (1999)Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression. Arch Gen Psychiatry 56: 315–320

    Google Scholar 

  326. Kolbinger HM, Höflich G, Hufnagel A, Möller HJ, Kasper S (1995) Transcranial magnetic stimulation ( TMS) in the treatment of major depression — a pilot study. Human Psycho-pharmacology 10: 305–310

    Google Scholar 

  327. Kole MH, Fuchs E, Ziemann U, Paulus W, Ebert U (1999) Changes in 5-HT1 A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain Res 826: 309–312

    PubMed  CAS  Google Scholar 

  328. Kozel FA, Nahas Z, DeBrux C, Molloy M, Lorberbaum JP, Bohning D, Risch SC, George MS (2000) How coil-cortex distance relates to age, motor threshold, and antidepressant response to repetitive transcranial magnetic stimulation. J Neuropsychiatry Clin Neurosci 12: 376–384

    PubMed  CAS  Google Scholar 

  329. Lefaucher JP, Drouot X, Nguyen JP (2001) Interventional neurophysiology for pain control: duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol 31: 247–252

    Google Scholar 

  330. Lisanby SH, Luber B, PereraT, Sackeim HA (2000)Transcranial magnetic stimulation: Applications in basic neuroscience and neuropsychopharmacology. Int J Neuropsychopharm 3: 259–273

    Google Scholar 

  331. Lisanby SH, Gutman D, Luber B, Schroeder C, Sackeim HA (2001 a) Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol Psychiatry 49: 460–463

    Google Scholar 

  332. Lisanby SH, Luber B, Sackeim HA, Finck AD, Schroeder C (2001 b) Deliberate seizure induction with repetitive transcranial magnetic stimulation in nonhuman primates. Arch Gen Psychiatry 58: 199–200

    Google Scholar 

  333. Lisanby SH, Schlaepfer TE, Fisch HU, Sackeim HA (2001c) Magnetic seizure therapy of major depression. Arch Gen Psychiatry 58: 303–305

    PubMed  CAS  Google Scholar 

  334. Lisanby SH (2002) Update on Magentic Seizure Therpie: A Novel Form of Convulsive Therapie. J ECT 18 (4): 182–188

    PubMed  Google Scholar 

  335. Lisanby SH (2003) Focal brain stimulation with repetitive transcranial magnetic stimulation (rTMS): implications for the neural circuitry of depression. Psychol Med 33: 7–13

    PubMed  Google Scholar 

  336. Loo C, Mitchell P, Sachdev P, McDarmont B, Parker G, Gandevia S (1999) Double-blind controlled investigation of transcranial magnetic stimulation for the treatment of resistant major depression. Am J Psychiatry 156: 946–948

    PubMed  CAS  Google Scholar 

  337. Loo CK, Taylor JL, Gandevia SC, McDarmont BN, Mitchell PB, Sachdev PS (2000) Transcranial magnetic stimulation (TMS) in controlled treatment studies: are some “sham” forms active? Biol Psychiatry 47: 325–331

    PubMed  CAS  Google Scholar 

  338. Loo CK, Sachdev PS, Elsayed H, McDarmont BN, Mitchell PB, Wilkinson M, Parker G, Gandevia SC (2001) Effects of a 2- to 4-week course of repetitive transcranial magnetic stimulation (rTMS) on neuropsychological functioning, electroencephalogram and auditory threshold in depressed patients. Biol Psychiatry 49: 615–623

    PubMed  CAS  Google Scholar 

  339. Loo CK, Mitchell PB, CrokerVM, Mal hi GS, Wen W, Gandevia SC, Sachdev PS (2003) Double-blind controlled investigation of bilateral prefrontal transcranial magnetic stimulation for the treatment of resistant major depression. Psychol Med 33: 33–40

    CAS  Google Scholar 

  340. Lucki I (1997) The forced swimming test as a model for core and component behavioural effects of antidepressant drugs. Behav Pharmacol 8: 523–532

    PubMed  CAS  Google Scholar 

  341. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47: 1043–1049

    PubMed  CAS  Google Scholar 

  342. Malberg JE, Fisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20: 9104–9110

    PubMed  CAS  Google Scholar 

  343. Malty J, StoneTW (1999) Therapeutic and dose-dependent effect of repetitive microelectroshock induced by transcranial magnetic stimulation in Parkinson’s disease. J Neurosci Res 57: 935940

    Google Scholar 

  344. Manes F, Jorge R, Morcuende M, Yamada T, Paradiso S, Robinson RG (2001) A controlled study of repetitive transcranial magnetic stimulation as a treatment of depression in the elderly. Int Psychogeriatr 13: 225–231

    PubMed  CAS  Google Scholar 

  345. Martin JL, Barbanoj MJ, Schlaepfer TE, Clos S, Perez V, Kulisevsky J (2003) Transcranial magnetic timulation for the treatment of depression: systematic review and meta-analysis. Br J Psychiatry (in press)

    Google Scholar 

  346. Matsumiya Y, Yamamoto T, Yarita M, Miyauchi S, KlingJW (1992) Physical and physiological specification of magnetic pulse stimuli that produce cortical damage in rats. J Clin Neurophysiol 9: 278–287

    CAS  Google Scholar 

  347. McCann U, KimbrelI TA, Morgan Ch, Anderson T, Geraci M, Benson B, Wassermann E, Willis MW, Post RM (1998) Repetitive Transcranial Magnetic Stimulation for Posttraumatic Stress Disorder. Arch Gen Psychiatry 55: 276–278

    PubMed  CAS  Google Scholar 

  348. McConnell KA, Nahas Z, Shastri A, Lorberbaum JP, Kozel FA, Bohning DE, George MS (2001) The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex. Biol Psychiatry 49: 454–459

    PubMed  CAS  Google Scholar 

  349. McGarvey KA, Zis AP, Brown EE, Nomikos GG, Fibiger HC (1993) ECS-induced dopamine release: effects of electrode placement, anticonvulsant treatment, and stimulus intensity. Biol Psychiatry 34: 152–157

    PubMed  CAS  Google Scholar 

  350. Migita K, Uozumi T, Arita K, et al (1995)Transcranial magnetic coil stimulation of Motor Cortex in Pateints with Central Pain. Neurosurgery 36: 1037

    Google Scholar 

  351. Mosimann UP, RihsTA, Engeler J, Fisch H, SchlaepferTE (2000) Mood effects of repetitive transcranial magnetic stimulation of left prefrontal cortex in healthy volunteers. Psychiatry Res 94: 251–256

    CAS  Google Scholar 

  352. Mosimann U, Marré SC, Werlen S, Schmitt W, Hess CW, Fisch HU, SchlaepferTE (2002) Antidepressant effects of repetitive transcranial magnetic stimulation in the elderly — Correlation between effect size and coil-cortex distance. Arch Gen Psychiatry 59: 560–561

    Google Scholar 

  353. Müller MB, Keck ME (2002a) Genetically engineered mice for studies of stress-related clinical conditions. J Psychiatr Res 36: 53–76

    PubMed  Google Scholar 

  354. Müller MB, Holsboer F, Keck ME (2002b) Genetic modification of corticosteroid receptor signalling: novel insights into pathophysiology and treatment strategies of human affective disorders. Neuropeptides 36: 117–131

    PubMed  Google Scholar 

  355. Müller MB, Toschi N, Kresse AE, Post A, Keck ME (2000) Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide by rosine mRNA in specific areas of rat brain. Neuropsychopharmacology 23: 205

    PubMed  Google Scholar 

  356. Münchau A, Bloem BR, Thilo KV, Trimble MR, Rothwell JC, Robertson MM (2002) Repetitive transcranial magnetic stimulation forTourette syndrome. Neurology 59: 1789–1791

    PubMed  Google Scholar 

  357. Nahas Z, DeBrux C, Chandler V, Lorberbaum JP, Speer AM, Molloy MA, Liberatos C, Risch SC, George MS (2000) Lack of significant changes on magnetic resonance scans before and after 2 weeks of daily left prefrontal repetitive transcranial magnetic stimulation for depression. J ECT 16: 380–390

    PubMed  CAS  Google Scholar 

  358. Nahas Z, Molloy M, Risch SC, George MS (2000) TMS in schizophrenia. In: George MS, Bel maker RH (eds)Transcranial magnetic stimulation in neuropsychiatry. Washington DC: American Psychiatric Press, Inc 237–252

    Google Scholar 

  359. Nahas Z, Lomarev M, Roberts DR, Shastri A, Lorberbaum JP, Teneback C, McConnell K, Vincent DJ, Li X, George MS, Bohning DE (2001) Unilateral left prefrontal transcranial magnetic stimulation ( TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol Psychiatry 50: 712–720

    Google Scholar 

  360. Nedjat S, Folkerts HW (1999) Induction of a reversible state of hypomania by rapid-rate transcranial magnetic stimulation over the left prefrontal cortex. J ECT 15: 166–168

    PubMed  CAS  Google Scholar 

  361. Nemeroff CB (1988)The role of corticotropin-releasing factor in the pathogenesis of major depression. Pharmacopsychiatry 21: 76–82

    Google Scholar 

  362. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15: 7539–7547

    PubMed  CAS  Google Scholar 

  363. Padberg F, Zwanzger P, Thoma H, Kathmann N, Haag C, Greenberg BD, Hampel H, Moller HJ (1999) Repetitive transcranial magnetic stimulation (rTMS) in pharmacotherapyrefractory major depression: comparative study of fast, slow and sham rTMS. Psychiatry Res 88: 163–171

    PubMed  CAS  Google Scholar 

  364. Padberg F, Juckel G, Präßl A, Zwanzger P, Mavrogiorgou P, Heger! U, Hampel H, Möller H (2001) Facial expressions and mood after transcranial magnetic stimulation of the prefrontal cortex. J Neuropsychiatry CI in Neurosci 13: 206–212

    CAS  Google Scholar 

  365. Padberg F, Schüle C, Zwanzger P, Baghai T, Ella R, Mikhaiel P, Hampel H, Möller HJ, Rupprecht R (2002a) Relation between responses to repetitive transcranial magnetic stimulation and partial sleep deprivation in major depression. J Psychiatr Res 36: 131135

    Google Scholar 

  366. Padberg F, Zwanzger P, Keck ME, Kathmann N, Mikhaiel P, Ella R, Rupprecht P, Thoma H, Hampel H, Toschi N, Möller HJ (2002b) Repetitive transcranial magnetic stimulation (rTMS) in major depression: Relation between efficacy and stimulation intensity. Neuropsychopharmacology 27: 638–645

    Google Scholar 

  367. Padberg F, di Michele F, Zwanzger P, Romea E, Bernardi G, Schüle C, Baghai T, Ella R, Pasini A, Rupprecht R (2002c) Plasma Concentrations of Neuroactive Steroids before and after Repetitive Transcranial Magnetic Stimulation (rTMS) in Major Depression. Neuropsychopharmacology 27: 874–878, Corrigendum Neupsychopharmacology 28: 610–611

    Google Scholar 

  368. Pascual-Leone A, Catalâ MD, Pascual-Leone Pascual A (1996a) Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood. Neurology 46: 499–502

    PubMed  CAS  Google Scholar 

  369. Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996b) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348: 233–237

    PubMed  CAS  Google Scholar 

  370. Paus T, Castro-Alamancos MA, Petrides M (2001) Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. EurJ Neurosci 14: 1405–1411

    CAS  Google Scholar 

  371. Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown and Co, Boston, Mass

    Google Scholar 

  372. Post RM, Kimbrell T, Frye M, George M, McCann U, Little J, Dunn R, Li H, Weiss SRB (1997) Implications of kindling and quenching for the possible frequency dependence of rTMS. CNS Spectrums 2: 54–60

    Google Scholar 

  373. Post A, Muller MB, Engelmann M, Keck ME (1999a) Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. Eur J Neurosci 11: 3247–3254

    PubMed  CAS  Google Scholar 

  374. Post RM, Kimbrell TA, McCann UD, Dunn RT, Osuch EA, Speer AM, Weiss SRB (1999b) Repetitive transcranial magnetic stimulation as a neuropsychiatric tool: present status and future potential. J ECT 15: 39–59

    PubMed  CAS  Google Scholar 

  375. Post A, Keck ME (2001) Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms? J Psychiatr Res 35: 193–215

    PubMed  CAS  Google Scholar 

  376. Pridmore S (1999) Rapid transcranial magnetic stimulation (rTMS) and normalisation of the dexamethasone suppression test (DST). Psychiatry Clin Neurosci 53: 33–37

    PubMed  CAS  Google Scholar 

  377. Pridmore S (2000) Substitution of rapid transcranial magnetic stimulation treatments for electroconvulsive therapy treatments in a course of electroconvulsive therapy. Depress Anxiety 12: 118–123

    PubMed  CAS  Google Scholar 

  378. Reid PD, Pridmore S (1999) Dexamethasone suppression test reversal in rapid transcranial magnetic stimulation-treated depression. Aust N Z J Psychiatry 33: 274–277

    PubMed  CAS  Google Scholar 

  379. Reid P, Pridmore S (2001) Improvement in chronic pain with transcranila magnetic stimulation. Aust N Z J Psychiatry 35: 252

    PubMed  CAS  Google Scholar 

  380. Reul JM, Stec I, Soder M, Holsboer F (1993) Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology 133: 312–320

    PubMed  CAS  Google Scholar 

  381. Reul JM, Labeur MS, Grigoriadis DE, De Souza EB, Holsboer F (1994) Hypothalamicpituitary-adrenocortical axis changes in the rat after long-term treatment with the reversible monoamine oxidase-A inhibitor moclobemide. Neuroendocrinology 60: 509519

    Google Scholar 

  382. Roll nik JD, Wüstefeld S, Däuper J, et al (2002) Repetitive Transcranial Magnetic Stimulation for the treatment of Chronic Pain — A Pilot Study. Eur Neurol 48: 6–10

    PubMed  Google Scholar 

  383. Sachdev PS, McBride R, Loo CK, Mitchell PB, Malhi GS, Croker VM (2001) Right versus left prefrontal transcranial magnetic stimulation for obsessive-compulsive disorder: a preliminary investigation. J Clin Psychiatry 62: 981–984

    PubMed  CAS  Google Scholar 

  384. Sachdev PS, McBride R, Loo CK, Mitchell PM, Malhi GS, CrokerV (2002) Effects of Different Frequencies of Transcranial Magnetic Stimulation ( TMS) on the Forced Swim Test Model of Depression in Rats. Biol Psychiatry 51: 474–479

    Google Scholar 

  385. Sackeim HA, Rush AJ, George MS, Marangell LB, Husain MM, Nahas Z, Johnson CR, Seidman S, Giller C, Haines S, Simpson RKJ, Goodman RR (2001)Vagus nerve stimulation (VNS) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology 25: 713–728

    Google Scholar 

  386. Schiffer F, Stinchfield Z, Pascual-Leone A (2002) Prediction of clinical response to transcranial magnetic stimulation for depression by baseline lateral visual-field stimulation. Neuropsychiatry Neuropsychol Behav Neurol 15: 18–27

    PubMed  Google Scholar 

  387. Schutter DJ, van Honk J, d’Alfonso AA, Postma A, de Haan EH (2001) Effects of slow rTMS at the right dorsolateral prefrontal cortex on EEG asymmetry and mood. Neuroreport 12: 445–447

    PubMed  CAS  Google Scholar 

  388. Sgro JA, Ghatak NR, Stanton PC, Emerson RG, Blair R (1991) Repetitive high magnetic field stimulation: the effect upon rat brain. In: Levy WJ, Cracco RQ, Barker AT, Rothwell J (eds) Magnetic motor stimulation: basic principles and clinical experience (EEG Suppl. 43 ). Elsevier, Amsterdam, 180–185

    Google Scholar 

  389. Shajahan PM, Glabus MF, Steele JD, Doris AB, Anderson K, Jenkins JA, Gooding PA, Ebmeier KP (2002) Left dorso-lateral repetitive transcranial magnetic stimulation affects cortical excitability and functional connectivity, but does not impair cognition in major depression. Neuro-Psychopharmacology and Biological Psychiatry 26: 945–954

    Google Scholar 

  390. Siebner HR, Rossmeier C, Mentschel C, Peinemann A, Conrad B (2000) Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson’s disease. J Neurol Sci 178: 91–94

    PubMed  CAS  Google Scholar 

  391. Speer AM, Kimbrel I TA, Wassermann EM, D Repella J, Willis MW, Herscovitch P, Post RM (2000) Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 48: 1133–1141

    PubMed  CAS  Google Scholar 

  392. Speer AM, Repella JD, Figueras S, Deminan NK, Kimbrell TA, Wasserman EM, Post RM (2001) Lack of adverse cognitive effects on 1 Hz and 20 Hz repetitive transcranial magnetic stimulation at 100% of motor threshold over left prefrontal cortex in depression. J ECT 17: 259–263

    PubMed  CAS  Google Scholar 

  393. Steward O, Kelley MS, Torre ER (1993) The process of reinnervation in the dentate gyrus of adult rats: temporal relationship between changes in the levels of glial fibrillary acidic protein ( GFAP) and GFAP mRNA in reactive astrocytes. Exp Neurol 124: 167–183

    Google Scholar 

  394. Strafella AP, PausT, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21: RC157

    Google Scholar 

  395. Szuba M, O’Reardon JP, Rai AS, Snyder-Kastenberg J, Amsterdam JD, Gettes DR, Wassermann EM, Evans DL (2001) Acute mood andTSH effects of transcranial magnetic stimulation in major depression. Biol Psychiatry 50: 22–27

    PubMed  CAS  Google Scholar 

  396. Teneback CC, Nahas Z, Speer AM, Molloy M, Stallings LE, Spicer KM, Risch SC, George MS (1999b) Changes in prefrontal cortex and paralimbic activity in depression following two weeks of daily left prefrontal TMS. J Neuropsychiatry Clin Neurosci 11: 426–435

    PubMed  CAS  Google Scholar 

  397. Thase ME (1999) How should efficacy be evaluated in randomized clinical trials of treatments for depression? J Clin Psychiatry 60 [Suppl 4]: 23–31

    PubMed  Google Scholar 

  398. Thomas DN, Nutt DJ, Holman RB (1992) Effects of acute and chronic electroconvulsive shock on noradrenaline release in the rat hippocampus and frontal cortex. Br J Pharmacol 106: 430–434

    PubMed  CAS  Google Scholar 

  399. Triggs WJ, McCoy KJ, Greer R, Rossi F, Bowers D, Kortenkamp S, Nadeau SE, Heilman KM, Goodman WK (1999) Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold. Biol Psychiatry 45: 1440–1446

    PubMed  CAS  Google Scholar 

  400. Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415: 1030–1034

    PubMed  Google Scholar 

  401. Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Trans-cranial Magnetic Stimulation, June 5–7, 1996. Electroenceph Clin Neurophysiol 1998: 1–16

    Google Scholar 

  402. Wassermann EM, Lisanby SH (2001) Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin Neurophysiol 112: 1367–1377

    PubMed  CAS  Google Scholar 

  403. Weiss U, Salloum JB, Schneider F (1999) Correspondence of emotional self-rating with facial expression. Psychiatry Research 86: 175–184

    PubMed  CAS  Google Scholar 

  404. Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wiegand M, Najafi A, Klein E, Hazen K, Bunney WEJ, Fallon JH, Keator D (1999) Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatry 156: 1149–1158

    PubMed  CAS  Google Scholar 

  405. Yoshida K, Higuchi H, Kamata M,Yoshimoto M, Shimizu T, HishikawaY (1998) Single and repeated electroconvulsive shocks activate dopaminergic and 5-hydroxytryptaminergic neurotransmission in the frontal cortex of rats. Prog Neuropsychopharmacol Biol Psychiatry 22: 435–444

    CAS  Google Scholar 

  406. Zetterstrom TS, Pei Q, Grahame-Smith DG (1998) Repeated electroconvulsive shock extends the duration of enhanced gene expression for BDNF in rat brain compared with a single administration. Brain Res Mol Brain Res 57: 106–110

    PubMed  CAS  Google Scholar 

  407. Zetterstrom TS, Pei Q, Madhav TR, Coppell AL, Lewis L, Grahame-Smith DG (1999) Manipulations of brain 5-HT levels affect gene expression for BDNF in rat brain. Neuropharmacology 38: 1063–1073

    PubMed  CAS  Google Scholar 

  408. Ziemann U, Paulus W, Rothenberger A (1997) Decreased motor inhibition in Tourette’s disorder: evidence from transcranial magnetic stimulation. Am.) Psychiatry 154: 1277–1284

    CAS  Google Scholar 

  409. Zis AP, Nomikos GG, Brown EE, Damsma G, Fibiger HC (1992) Neurochemical effects of electrically and chemically induced seizures: an in vivo microdialysis study in the rat hippocampus. Neuropsychopharmacology 7: 189–195

    PubMed  CAS  Google Scholar 

  410. Zwanzger P, Baghai TC, Padberg F, Ella R, Minov C, Mikhaiel P, Schüle C, Thoma H, Rupprecht R (2002a) The combined dexamethasone-corticotropin-releasing-hormone test ( DEX/CRH test) before and after treatment with repetitive transcranial magnetic stimulation in major depression. Psychoneuroendocrinology 28: 376–385

    Google Scholar 

  411. Zwanzger P, Minov Ch, Ella R, Schüle C, Baghai Th, Möller HJ, Rupprecht R, Padberg F (2002b) Transcranial Magnetic Stimulation for Panic. Am J Psychiatry 159: 315–316

    PubMed  Google Scholar 

  412. Zwanzger P, Ella R, Keck ME, Rupprecht R, Padberg F (2002c) Occurrence of delusions during repetitive transcranial magnetic stimulation (rTMS) in major depression. Biol Psychiatry 51: 602–603

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Smesny et al. (2004). Wissenschaftliche Grundlagen der EKT. In: Baghai, T.C., Frey, R., Kasper, S., Möller, HJ. (eds) Elektrokonvulsionstherapie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3752-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3752-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-3753-6

  • Online ISBN: 978-3-7091-3752-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics