From single slices to volume imaging: (r)evolution in computed tomography

  • A. F. Kopp
  • K. Klingenbeck-Regn
  • B. Ohnesorge
  • C. D. Claussen


Since its clinical introduction in 1991, volumetric CT scanning using spiral or helical scanners has resulted in a revolution for diagnostic imaging. In addition to new applications for CT, such as CT angiography and the assessment of patients with renal colic, many routine applications such as the detection of lung and liver lesions have substantially improved. Helical CT has improved over the past eight years with faster gantry rotation, more powerful X-ray tubes, and improved interpolation algorithms [7,14]. However, in practice the spiral data sets from monoslice systems suffered from a considerable mismatch between the transverse (in plane) and the longitudinal (axial) spatial resolution. In other words the isotropic 3-dimensional voxel could not be realized apart from some very specialized cases [12]. Similarly, in routine practice a number of limitations still remained which prevented the scanning protocol to be fully adapted to the diagnostic needs [5].


Single Slice Volume Coverage Slice Width Spiral Scanning Somatom Volume Zoom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Achenbach S, Moshage W, Ropers D, Nossen J, Daniel WG (1998) Value of electron-beam computed tomography for the noninvasive detection of high-grade coronary-artery stenoses and occlusions. N Engl J Med 339: 1964–1971PubMedCrossRefGoogle Scholar
  2. [2]
    Becker CR, Knez A, Ohnesorge B, Flohr T, Schöpf UJ, Reiser MF (1999a) Detection and quantification of coronary artery calcifications with prospectively ECG triggered multirow conventional CT and electron beam computed tomography: comparison of different methods for quantification of coronary artery calcifications. Radiology 213 (P): 351Google Scholar
  3. [3]
    Becker CR, Schöpf UJ, Brüning R, Reiser MF (1999b) Erste Erfahrungen mit dem Somatom Plus 4 Voume Zoom Mehrzeilendetektor CT: Kombi nations-Scan des Thorax zur Diagnostik des Mediastinums, der thorakalen Gefäße und des Lungenparenchyms. Electromedica 67: 53–55Google Scholar
  4. [4]
    Berland LL, Smith JK (1998) Multidetector-array CT: once again, technology creates new opportunities. Radiology 209: 327–329PubMedGoogle Scholar
  5. [5]
    Brink JA, Heiken JP, Balfe M, Sagel SS, DiCroce J (1992) Decreased spatial resolution in vivo due to broadening of section-sensitivity profile. Radiology 185: 469–474PubMedGoogle Scholar
  6. [6]
    Costello P (1996) Subsecond scanning makes CT even faster. Diagnostic Imaging 18: 76–79Google Scholar
  7. [7]
    Crawford CR, King KF (1990) Computed tomography scanning with simultaneous patient translation. Med Phys 17: 967–982PubMedCrossRefGoogle Scholar
  8. [8]
    Flamm SD (1998) Coronary Arterial Calcium Screening: Ready for Prime Time? Radiology 208: 571–572PubMedGoogle Scholar
  9. [9]
    Flohr T, Schaller S, Ohnesorge B, Klingenbeck-Regn K, Kopp AF (1999) Evaluation of Image Artifacts in Multislice CT. Radiology 213 (P): 317Google Scholar
  10. [10]
    Fox SH, Tanenbaum LN, Ackelsberg S, He HD, Hsieh J, Hu H (1998) Future directions in CT technology. Neuroimaging Clinics of North America 8: 497–513PubMedGoogle Scholar
  11. [111.
    Hu H, He HD, Foley WD, Fox SH (2000) Four multidetector-row helical CT: image quality and volume coverage speed. Radiology 215: 55–62PubMedGoogle Scholar
  12. [12]
    Kalender WA (1995) Thin-section three-dimensional spiral CT: is isotropic imaging possible? Radiology 197: 578–580PubMedGoogle Scholar
  13. [13]
    Kalender WA (1999) Innovations in computed tomography. Radiology 213 (P): 149Google Scholar
  14. [14]
    Kalender WA, Seissler W, Klotz E, Vock P (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport and continuous scanner rotation. Radiology 176: 181–183PubMedGoogle Scholar
  15. [15]
    Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U (1999) Subsecond multislice computed tomography: basics and applications. Eur J Radiol 31: 110–124PubMedCrossRefGoogle Scholar
  16. 116]
    Kopp AF, Georg C, Schröder S, Claussen CD (2000b) CT-Angiographie der Herzkranzgefäße bei koronarer 3-Gefäß-Erkrankung. Fortschr Röntgenstr 172: M3 - M4CrossRefGoogle Scholar
  17. [17]
    Kopp AF, Ohnesorge B, Flohr T, Georg C, Schröder S, Küttner A, Martensen J, Claussen CD (2000a) Multidetektor CT des Herzens: Erste klinische Anwendung einer retrospektiv EKG-gesteuerten Spirale mit optimierter zeitlicher und örtlicher Auflösung zur Darstellung der Herzkranzgefäße. Fortschr Röntgenstr 172: 1–7Google Scholar
  18. [18]
    Kopp AF, Ohnesorge B, Flohr T, Schroeder S, Claus-sen CD (1999) Multidetector-row CT for the noninvasive detection of high-grade coronary artery stenoses and occlusions: first results. Radiology 213 (P): 435Google Scholar
  19. [19]
    Leung AW, Klein JS (1999) Optimization of spiral CT of the thorax. Radiology 213 (P): 73Google Scholar
  20. [20]
    Ohnesorge B, Flohr T, Becker C, Knez A, Kopp AF, Fukuda K, Reiser MF (2000a) Herzbildgebung mit schneller, retrospektiv EKG-synchronisierter Mehrschichtspiral-CT. Radiologe 40: 111–117PubMedCrossRefGoogle Scholar
  21. [21]
    Ohnesorge B, Flohr T, Becker C, Kopp AF, Schoepf UJ, Baum U, Knez A, Klingenbeck-Regn K, Reiser MF (2000b) Cardiac Imaging with ECG-Gated Multi-Slice Spiral CT — Initial Experience. Radiology (in Press)Google Scholar
  22. [22]
    Ohnesorge B, Flohr T, Becker CR, Kopp AF, Knez A (1999b) Comparison of EBCT and ECG-gated multi-slice spiral CT: a study of 3D Ca-scoring with phantom and patient data. Radiology 213 (P): 402Google Scholar
  23. [23]
    Ohnesorge B, Flohr T, Schaller S, Klingenbeck-Regn K, Becker C, Schöpf UJ, Brüning R, Reiser MF (1999a) Technische Grundlagen und Anwendungen der Mehrschicht-CT. Radiologe 39: 923–931PubMedCrossRefGoogle Scholar
  24. [24]
    Saito Y, Suzuki T (2000) Evaluation of the Performance of Multi-slice CT System in Non-helical Scanning. Radiology 209 (P): 578Google Scholar
  25. [25]
    Schaller S, Flohr T, Steffen P (1997) A new, efficient Fourier-reconstruction method for approximate image reconstruction in spiral cone-beam CT at small coneangles. Proceedings of the SPIE International Symposium on Medical Imaging 3032: 213–224Google Scholar
  26. [26]
    Schaller S, Flohr T, Wolf H, Kalender WA (1999a) Evaluation of a Spiral Reconstruction Algorithm for Multirow-CT. Radiology 209 (P): 434Google Scholar
  27. [27]
    Schaller S, Ohnesorge B, Flohr T, Klingenbeck-Regn K (1999b) Dose in Multislice Spiral CT. Radiology 213 (P): 284Google Scholar
  28. [28]
    Schöpf UJ, Becker CR, Bruning R, Huber AM, Hong C (1999) Multidetector-array spiral CT imaging of focal and diffuse lung disease: thin-collimation data acquisition with reconstruction of contiguous and HRCT sections. Radiology 213 (P): 258Google Scholar
  29. [29]
    Taguchi K, Aradate H (1998) Algorithm for image reconstruction in multi-slice helical CT. Med Phys 25: 550–561PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • A. F. Kopp
    • 1
  • K. Klingenbeck-Regn
    • 2
  • B. Ohnesorge
    • 2
  • C. D. Claussen
    • 1
  1. 1.Department of Diagnostic RadiologyEberhard-Karls-University TübingenGermany
  2. 2.Medical EngineeringSiemens AGForchheimGermany

Personalised recommendations