F-18-FDG PET in Oncology

  • P. Lind
  • O. Unterweger


An unstable, neutron-poor, atomic nucleus usually decays by emitting a positron. The emitted positron is the antiparticle of the electron, that means it has the same weight as the electron, but is conversely charged. This positive particle travels a short distance within the surrounding matter. On its way through the matter, the positron loses almost the whole amount of its kinetic energy and recombines with an electron. The masses of both particles are converted into energy in accordance with Einstein’s law of energy conservation. To conserve energy and linear momentum, the resulting electromagnetic radiation is in the form of two gamma-photons of 511 keV and emitted in opposite directions. This process is called annihilation and leads to a divergent emission of the two equal energy photons. The distance a positron covers before annihilation depends on the kind of isotope used (see Table 1).


Positron Emission Tomography Thyroid Cancer Standard Uptake Value Hodgkins Lymphoma Papillary Thyroid Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aassar OS, Fishbein NJ, Caputo GR et al (1999) Metastatic head and neck cancer: role and usefulness of FDG PET in locating occult primary tumors. Radiology 210: 177 - 181PubMedGoogle Scholar
  2. [2]
    Adams S, Baum RP, Stukkensen T et al (1998) Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med 25: 1255-1260Google Scholar
  3. [3]
    Al-Sugair A, Coleman RE (1998) Application of PET in lung cancer. Semin Nucl Med 28: 303 - 319PubMedCrossRefGoogle Scholar
  4. [4]
    Altenvoerde G, Lerch H, Kuwert T et al (1998) Positron emission tomography with F-18-deoxyglucose in patients with differentiated thyroid carcinoma, elevated thyroglobulin levels and negative iodine scans. Langenbecks Arch Surg 383: 160 - 163PubMedCrossRefGoogle Scholar
  5. [5]
    Antonelli A, Miccoli P, Ferdeghini M et al (1995) Role of neck ultrasonography in the follow up of patients operated on for thyroid cancer. Thyroid 5: 25 - 28PubMedCrossRefGoogle Scholar
  6. [6]
    Bailet JW, Abemayor E, Jabour BA et al (1992) Positron emission tomography: a new precise modality for detection of primary head and neck tumors and assessment of cervical adenopathy. Laryngoscope 102: 281 - 288PubMedGoogle Scholar
  7. [7]
    Bares R, Klever P, Hauptmann S et al (1994) F-18 fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology 192: 79 - 86PubMedGoogle Scholar
  8. [8]
    Bender H, Straehler-Pohl HJ, Schomburg A et al (1998) Value of F-18-FDG PET in the assessment of head and neck tumors. J Nucl Med 38: 153Google Scholar
  9. [9]
    Blessing C, Feine U, Geiger L et al (1995) Positron emission tomography and ultrasonography — a comparative retrospective study assessing the diagnostic validity in lymph node metastases of malignant melanoma. Arch Dermatol 131: 1394 - 1398PubMedCrossRefGoogle Scholar
  10. [10]
    Bluemke DA, Fishman EK (1998) CT and MR evaluation in pancreatic cancer. Surg Oncol Clin N Am 7: 103 - 124PubMedGoogle Scholar
  11. [11]
    Braams JW, Pruim J, Kole AC et al (1997) Detection of unknown primary head and neck tumors by positron emissions tomography. Int J Oral Maxillofac Surg 26: 112 - 115PubMedCrossRefGoogle Scholar
  12. [12]
    Breslow A (1970) Thickness, cross sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 172: 902 - 908PubMedCrossRefGoogle Scholar
  13. [13]
    Briele B, Hotze A, Kropp J et al (1991) Vergleich von TI-201 and Tc-99m MIBI in der Nachsorge des differenzierten Schilddrüsencarcinoms. Nuklearmedizin 30: 115 - 124PubMedGoogle Scholar
  14. [14]
    Burry T, Paulus P, Dowlati A et al (1996) Staging of the mediastinum: value of positron emission tomography imaging in non-small cell lung cancer. Eur Resp J 9: 2560-2564.Google Scholar
  15. [15]
    Bury T, Dowlati A, Paulus P et al (1996) Evaluation of solitary pulmonary nodule by positron emission tomography imaging. Eur Expir J 9: 410 - 414Google Scholar
  16. [16]
    Cappel I, Blum U, Ungeheuer E (1983) Bedeutung der Vorsorgeuntersuchung für die Prognose des Dickdarmkarzinoms. Schweiz Med Wochenschr 113: 550 - 552PubMedGoogle Scholar
  17. [17]
    Castellino RA, Hoppe R, Blank N et al (1984) Computed tomography, lymphography and staging laparatomy: correlation in initial staging of Hodgkins disease AIR 143: 37 - 41Google Scholar
  18. [18]
    Castellino RA, Hoppe R, Blank N et al (1986) Hodgkins disease: contribution of chest CT in the initial staging evaluation. Radiology 160: 603 - 605PubMedGoogle Scholar
  19. [19]
    Cherry SR, Phelps ME (1996) Positron Emission Tomography: Methods and Instrumentation, Diagnostic nuclear medicine, Williams Wilkins, ISBN 0-683-07503-9Google Scholar
  20. [20]
    Conces DJ, Tarver RD, Gray WC et al (1988) Treatment of pneumothoraces utilizing small caliber chest tubes. Chest 94: 55 - 57PubMedCrossRefGoogle Scholar
  21. [21]
    Conti PS, Durski JM, Bacqai F et al (1999) Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography. Thyroid 9: 797 - 804PubMedCrossRefGoogle Scholar
  22. [22]
    Dadparvar S, Krischna L, Brady LW et al (1993) The role of I-131, thallium-201 imaging and serum thyroglobulin in the management of differentiated thyroid carcinoma. Cancer 71: 3767 - 3773PubMedCrossRefGoogle Scholar
  23. [23]
    Debelke D, Vitola JV, Sandler MP et al (1997) Staging recurrent metastatic colorectal carcinoma with PET. J Nucl Med 38: 1196 - 1201Google Scholar
  24. [24]
    Dehdashti F, Griffith LK, McGuire AH et al (1992) FDG-PET evaluation of suspicious pulmonary and mediastinal masses. J Nucl Med 32: 961 PGoogle Scholar
  25. [25]
    Dewan NA, Reeb SD, Gupta NC et al (1995) PET FDG imaging and transthoracic needle lung aspiration biopsy in evaluation of pulmonary lesions. Chest 108: 441 - 446PubMedCrossRefGoogle Scholar
  26. [26]
    Dewan NA, Shehan CJ, Reeb SD et al (1997) Likelihood of malignancy in a solitary pulmonary nodule. Comparison of Bayesian analysis and results of FDG PET scan. Chest 112: 416-422Google Scholar
  27. [27]
    Diel Si, Lehmann KJ, Sadick M et al (1998) Pancreatic cancer: value of dual-phase helical CT in assessing resectability. Radiology 206: 373 - 378Google Scholar
  28. [28]
    Dietlein M, Scheidhauer K, Voth E et al (1997) Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole body scintigraphy in the follow up of differentiated thyroid cancer. Eur J Nucl Med 24: 1342 - 1348PubMedCrossRefGoogle Scholar
  29. [29]
    Farber LA, Bernard F, Machtay M et al (1999) Detection of recurrent head and neck squamous cell carcinoma after radiation therapy with 2-18Ffluoro-2-deoxy-D-glucose positron emission tomography. Laryngoscope 109: 970 - 975PubMedCrossRefGoogle Scholar
  30. [30]
    Feine U, Lizenmayer R, Hanke JP et al (1996) Fluorine-18 FDG and iodine-131 uptake in thyroid cancer. J Nucl Med 37: 1468 - 1472PubMedGoogle Scholar
  31. [31]
    Fishman EK, Kuhlman LE, Jones RJ et al (1991) CT of lymphoma: spectrum of disease. RadioGraphics 11: 647 - 669Google Scholar
  32. [32]
    Findley M, Young H, Cunninham D et al (1996) Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 14: 700 - 708Google Scholar
  33. [33]
    Freeny PC, Marks WM, Ryan JA et al (1986) Colorectal carcinoma evaluation with CT: preoperative staging and detection of postoperative recurrences. Radiology 158: 347 - 353PubMedGoogle Scholar
  34. [34]
    Gambhir SS, Shepherd JE, Shah BD et al (1998) An analytical decision model for the cost effective management of solitary pulmonary nodules. J Clin Oncol 16: 2113 - 2125PubMedGoogle Scholar
  35. [35]
    Gould MK, Lillington GA (1998) Strategy and cost in solitary pulmonary nodule. Thorax 53: 32 - 35CrossRefGoogle Scholar
  36. [36]
    Graeber GM, Gupta NC, Murray GF (1999) Positron emission tomography imaging with fluorodeoxyglucose is efficacious in evaluating malignant pulmonary disease. J Thorac Cardiovasc Surg 117: 719 - 727PubMedCrossRefGoogle Scholar
  37. [37]
    Greven KM, Williams DW, Keyes JW et al (1994) Positron emission tomography of patients with head and neck carcinoma before and after high dose irradiation. Cancer 74: 1355 - 1359PubMedCrossRefGoogle Scholar
  38. [38]
    Gritters LS, Francis IR, Zasadny KR, Wahl RL (1993) Initial assessment of positron emission tomography using 2-fluorine-18-fluoro-2-deoxy-o-glucose in the imaging of malignant melanoma. J Nucl Med 34: 1420 - 1427PubMedGoogle Scholar
  39. [39]
    Grünwald F, Menzel C, Bender H et al (1997) Comparison of 18FDG-PET with 131 iodine and 99m Tc-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid 7: 327 - 335PubMedCrossRefGoogle Scholar
  40. [40]
    Guhlmann A, Storck M, Kotzerke J et al (1997) Lymph node staging in non-small cell lung cancer: evaluation by [18E FDG positron emission tomography ( PET ). Thorax 52: 438-441Google Scholar
  41. [41]
    Gupta NC, Graeber GM, Rogers SJ, Bishop HA (1999) Comparative efficacy of positron emission tomography with FDG and computed tomographic scanning in preoperative staging of non small cell lung cancer. Ann Surg 229: 286 - 291PubMedCrossRefGoogle Scholar
  42. [42]
    Gupta NC, Malof J, Gunel E (1996) Probability of malignancy in solitary pulmonary nodules using F-18 FDG and PET. J Nucl Med 37: 943 - 948PubMedGoogle Scholar
  43. [43]
    Haberkorn U, Strauss LG, Dimitrakopopoulou A et al (1991) PET studies of fluoro-deoxyglucose metabolism in patients with recurrent tumors receiving radiotherapy. J Nucl Med 32: 1485 - 1490PubMedGoogle Scholar
  44. [44]
    Hanasono MM, Kunda LD, Segall GM et al (1999) Uses and limitations of FDG positron emission tomography in patients with head and neck cancer. Laryngoscope 109: 880 - 885PubMedCrossRefGoogle Scholar
  45. [45]
    Haramati LB, Austin JHM (1991) Complications of CT guided needle biopsy through aerated versus non-aerated lung. Radiology 181: 778PubMedGoogle Scholar
  46. [46]
    Hiraki Y, Rosen OM, Birnbaum MJ (1988) Growth factors rapidly induce expression of the glucose transporter gene. J Biol Chem 27: 13655 - 13662Google Scholar
  47. [47]
    Ho CL, Dehdashti F, Griffeth LH et al (1996) FDGPET evaluation of intermediate pancreatic masses. J Comput Assist Tomogr 20: 363 - 369PubMedCrossRefGoogle Scholar
  48. [48]
    Hoefnagel CA, Delprat CC, Marcuse HR, de Vijlder JJM (1986) Role of thallium-201 total body scintigraphy in follow up of thyroid carcinoma. J Nucl Med 27: 1854 - 1857PubMedGoogle Scholar
  49. [49]
    Hoh CK, Glaspy J, Rosen P et al (1997) Whole-body FDG PET imaging for staging Hodgkins disease and lymphoma. J Nucl Med 38: 343 - 348PubMedGoogle Scholar
  50. [50]
    Hubner KF, Buonocore E, Singh SK et al (1995) Characterisation of chest masses by FDG Posi-tron Emission Tomography. Clin Nucl Med 20: 293 - 298PubMedCrossRefGoogle Scholar
  51. [51]
    Hüfner M, Stumpf HP, Grussendorf M et al (1983) A comparison of the effectiveness of 1-131 whole body scans and plasma Tg determination in a diagnosis for metastatic differentiated carcinoma of the thyroid: a retrospective study. Acta Endocrinol 104: 32 - 332Google Scholar
  52. [52]
    Joensuu H, Ahonen A, Klemi PJ (1998) F-18-fluorodeoxyglucose imaging in preoperative diagnosis of thyroid malignancy. Eur J Nucl Med 13: 502 - 506Google Scholar
  53. [53]
    Khouri NF, Mezziane MA, Zerhouni MA et al (1987) The solitary pulmonary nodule — assessment, diagnosis and management. Chest 91: 128 - 133PubMedCrossRefGoogle Scholar
  54. [54]
    Kutlu CA, Pastorino U, Maisy M, Goldstraw P (1998) Selective use of PET scan in the preoperative staging of NSCLC. Lung Cancer 21: 177 - 184PubMedCrossRefGoogle Scholar
  55. [55]
    Kuwabara H, Gjedde A (1991) Measurements of glucose phosphorylation with FDG and PET are not reduced by dephosphorylation of FDG-6-phosphate. J Nucl Med 23: 918 - 922Google Scholar
  56. [56]
    Lai DT, Fulham M, Stephen MS et al (1996) The role of whole-body positron emission tomography with 18F-fluorodeoxyglucose in identifying operable colorectal cancer metastases to the liver. Arch Surg 131: 703 - 707.PubMedCrossRefGoogle Scholar
  57. [57]
    Lewis P, Griffin S, Marsden P et al (1994) Whole-body FDG Positron Emission Tomography in pre-operative evaluation of lung cancer. Lancet 344: 1255 - 1266CrossRefGoogle Scholar
  58. [58]
    Lind P (1999) Multi-tracer imaging of thyroid nodules: is there a role in the preoperative assessment of nodular goiter. Eur J Nucl Med 26: 795 - 797PubMedCrossRefGoogle Scholar
  59. [59]
    Lind P, Gallowitsch HJ (1996) The use of non specific tracers in the follow up of differentiated thyroid cancer: Results with Tc-99m Tetrofosmin whole body scintigraphy. AMA 23: 69 - 75Google Scholar
  60. [60]
    Lind P, Gallowitsch HJ, Langsteger W et al (1997) Technetium-99m Tetrofosmin whole body scintigraphy in the follow up of differentiated thyroid carcinoma. J Nucl Med 38: 348 - 352PubMedGoogle Scholar
  61. [61]
    Lind P, Gallowitsch HJ, Unterweger O et al (1998) FDG PET in the follow up of thyroid cancer: comparison with Tc-99m tetrofosmin and 1-131 whole body scintigraphy. Eur J Nucl Med 25: 974Google Scholar
  62. [62]
    Lind P, Lechner P, Arian-Schad K et al (1991) Anticarcinoembryonic antigen immunoscintigraphy (Tc-99m monoclonal antibody BW 431/26) and serum CEA levels in patients with suspected primary and recurrent colorectal carcinoma. J Nucl Med 32: 1319 - 1325PubMedGoogle Scholar
  63. [63]
    Lowe VJ, Dunphy RS, Varvares M et al (1997) Evaluation of chemotherapy response in patients with advanced head and neck cancer using F-18 fluorodeoxyglucose positron emission tomography. Head Neck 19: 666 - 674PubMedCrossRefGoogle Scholar
  64. [64]
    Lowe VJ, Fletcher JW, Gobar L et al (1998) Prospective investigation of Positron Emission Tomography in lung nodules. J Clin Oncol 16: 1075 - 1084PubMedGoogle Scholar
  65. [65]
    Lubin E, Mechlis-Frish S, Zatz S et al (1994) Serum thyroglobulin and I-131 whole body scan in the diagnosis and assessment of treatment for metastatic differentiated thyroid carcinoma. J Nucl Med 35: 257 - 262PubMedGoogle Scholar
  66. [66]
    Mack MJ, Hazelrigg SR, Landreneau RJ, Acuft TE (1993) Thoracoscopy for the diagnosis of intermediate solitary pulmonary nodule. Ann Thorac Surg 56: 825 - 832PubMedCrossRefGoogle Scholar
  67. [67]
    Mainolfi C, Maurea S, Varella P et al (1998) Positron emission tomography with fluorine-18-deoxyglucose in the staging and control of patients with lymphoma. Comparison with clinico-radiologic assessment. Radiol Med 95: 98-104Google Scholar
  68. [68]
    Marom EM, McAdams HP, Erasmus JJ et al (1999) Staging non-small cell lung cancer with whole body PET. Radiology 212: 803 - 809PubMedGoogle Scholar
  69. [69]
    McGuirt WF, Greven K, Williams D et al (1998). PET scanning in head and neck oncology: a review. Head Neck 20: 208 - 215PubMedCrossRefGoogle Scholar
  70. [70]
    Mikosch P, Gallowitsch HJ, Kresnik E et al (1999) Value of ultrasound guided fine-needle aspiration biopsy of thyroid nodules in an endemic goiter area. Eur J Nucl Med in pressGoogle Scholar
  71. [71]
    Moog F, Bangerter M, Diederichs CG et al (1997) Lymphoma: role of whole body 2-deoxy-2-[F-1 8]fluoro-D-glucose ( FDG) in nodal staging. Radiology 203: 795-800Google Scholar
  72. [72]
    Moreau P, Goffart J, Collignon J (1990) Computed tomography of metastatic cervical lymph nodes. Arch Otolaryngol Head Neck Surg 116: 1190 - 1193PubMedCrossRefGoogle Scholar
  73. [73]
    Nguyen AT, Akhurst T, Larson SM et al (1999) PET scanning with 18F-2-fluoro-2-deoxy-D-glucose (FDG) in patients with Melanoma: benefits and limitations Clinical Positron Imaging 2: 93 - 98Google Scholar
  74. [74]
    Ogunbiyi OA, Flanagan FL, Dehdashti F et al (1997) Detection of recurrent and metastatic colorectal cancer: comparison of positron emission tomography and computed tomography. Ann Surg Oncol 4: 613— 62 0Google Scholar
  75. [75]
    Ostertag H (1992) Positronen-Emissions-Tomographie (PET): Ein diagnostisches Verfahren zur in vivoStoffwechseluntersuchung mit Positronenstrahlern. Physikalische Blätter 48 (2): 77 - 83CrossRefGoogle Scholar
  76. [76]
    Patz EF, Lowe VJ, Goodman PC, Herrndon J (1995) Thoracic nodule staging with PET imaging with 18FDG in patients with bronchogenic carcinoma. Chest 108: 1617 - 1621PubMedCrossRefGoogle Scholar
  77. [77]
    Patz EF, Laue VJ, Hofmann et al (1993) Focal pulmonary abnormalities: Evaluation with FDG-PET scanning. Radiology 188: 487-490Google Scholar
  78. [78]
    Paulus P, Benoit TH, Bury TH et al (1995) Positron Emission Tomography with F-18 FDG in the assessment of solitary pulmonary nodules. Eur J Nucl Med 22: 775Google Scholar
  79. [79]
    Paulus P, Sambon A, Vivegnis D et al (1998) 18FDG-PET for the assessment of primary head and neck tumors: clinical, computed tomography and histopathological correlation in 38 patients. Laryngoscope 108: 1578 - 1583Google Scholar
  80. [80]
    Prauer HW, Weber WA, Römer W et al (1998) Controlled prospective study of positron emission tomography using the glucose analogue [18f] flu-orodeoxy-glucose in the evaluation of pulmonary nodules. Br J Surg 85: 1506 - 1511PubMedCrossRefGoogle Scholar
  81. [81]
    Rege SD, Hoh CK, Glaspy JA et al (1993) Imaging of pulmonary mass lesions with whole-body positron emission tomography and fluorodeoxyglucose. Cancer 72: 82 - 90PubMedCrossRefGoogle Scholar
  82. [82]
    Reske SN, Bares R, Büll U et al (1997) Klinische Wertigkeit der Positronen Emissions Tomographie (PET) bei onkologischen Fragestellungen: Ergebnisse einer interdisziplinären Konsensuskonferenz. Nuklearmedizin 35: 45-52Google Scholar
  83. [83]
    Römer W, Hanauske AR, Ziegler S et al (1998) PET in Non-Hodgkins lymphoma: Assessment of chemotherapy with FDG. Blood 91: 4464-4471Google Scholar
  84. [84]
    Rettenbacher L, Koller J, Kässmann H, Galvan G (1997) Selective regional lymphadenectomy in malignant melanoma using a gamma probe. AMA 24: 79 - 80Google Scholar
  85. [85]
    Sasaki M, Ichiya Y, Kuwabara Y et al (1996) The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with non-small cell lung cancer: comparative study with X-ray computed tomography. Eur J Nucl Med 23: 741 - 747PubMedCrossRefGoogle Scholar
  86. [86]
    Schlumberger M, Challeton C, De Vathaire F et al (1996) Radioactive Iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med 37: 598 - 605PubMedGoogle Scholar
  87. [87]
    Steinert HC, Hauser M, Allemann F et al (1997) Non-small cell lung cancer: Nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. Radiology 202: 441-446Google Scholar
  88. [88]
    Steinert HC, Huch-Böni RA, Buck A et al (1995) Malignant melanoma: staging with whole-body positron emission tomography and 2-[F-1 8]-fluoro2-deoxy-D-glucose. Radiology 195: 705 - 709PubMedGoogle Scholar
  89. [89]
    Stokkel MP, ten Broek FW, van Rijk PP (1999) Preoperative assessment of cervical lymph nodes in head and neck cancer with fluorine-18 fluorodeoxyglucose using a dual head coincidence camera: a pilot study. Eur J Nucl Med 26: 499 - 503PubMedCrossRefGoogle Scholar
  90. [90]
    Stollfuß JC, Glatting G, Friess H et al (1995) 2(fluorine-18)-fluoro-2-deoxy-D-glucose PET in detection of pancreatic cancer: value of quantitative image interpretation. Radiology 195: 339 - 344Google Scholar
  91. [91]
    Strauss LG, Clorius JH, Schlag P et al (1989) Recurrence of colorectal tumors. PET evaluation. Radiology 170: 329-332Google Scholar
  92. [92]
    Stumpe KDM, Urbinelli M, Steínert HC et al (1998) Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med 25: 721 - 728PubMedCrossRefGoogle Scholar
  93. [93]
    Thill R, Neuerburg J, Fabry U et al (1997) Comparison of 18-FDG PET and CT for pretherapeutic staging of malignant lymphoma. NuclearMedicine 36: 234 - 239PubMedGoogle Scholar
  94. [94]
    Valk PE, Pounds DR, Hopkins DM et al (1995) Staging lung cancer by PET imaging. Ann Thor Surg 60: 1573 - 1582CrossRefGoogle Scholar
  95. [95]
    Vansteenkiste JF, Stroobants SG, DeLeyr PR (1998) Lymph-node staging in non-small cell lung cancer with FDG PET scan: a prospective study on 690 lymph node stations from 68 patients. J Clin Oncol 16: 2142 - 2149PubMedGoogle Scholar
  96. [96]
    Wang W, Macapinlac H Larson SM et al (1999) [18F]-2-fluoro-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)1 whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 84: 2291 - 2302Google Scholar
  97. [97]
    Warburg 0 (1993) The metabolism of tumours. Smith RR Inc, New York pp 129 - 169Google Scholar
  98. [98]
    Weber W, Römer W, Ziegler S et al (1995) Clinical value of F-18 FDG PET in solitary pulmonary nodules. Eur J Nucl Med 22: 775Google Scholar
  99. [99]
    Weder W, Schmid RA, Bruchhaus H et al (1998) Detection of extrathoracic metastases by Positron Emission Tomography in lung cancer. Ann Thorac Surg 66: 886 - 892PubMedCrossRefGoogle Scholar
  100. [100]
    Zimny M, Bares R, Fass J et al (1997) Fluorine-18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. Eur J Nucl Med 24: 678 - 682PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • P. Lind
    • 1
  • O. Unterweger
    • 1
  1. 1.Department of Nuclear Medicine and EndocrinologyPET CenterLKH KlagenfurtAustria

Personalised recommendations