Digital pediatric radiology

  • K. Gindl


Following the discovery of digital luminescence radiology, the new technique was quickly put to use in pediatrics, where it has been used in thoracic diagnosis, neonatal care, urogenital examinations, fluoroscopy examinations, and the musculoskeletal area including traumatology. Initial reports [19,20] inspired great hopes for digital luminescence as a technology with a significant potential for dose reduction. In particular, the wide dynamic range of image plate systems (1:104, in comparison to 1:102 for conventional screen-film systems) permits wide latitude in exposure. This is an advantage especially for pediatric patients, who can vary considerably in size. The use of workstations is indispensable for optimal diagnosis, image post-processing and distribution, and telemedicine.


Pediatric Intensive Care Unit Compute Radiography Digital Radiography Digital Technique Digital Radiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bartsch M, Richter E (1992) Digitale Lumineszenzradiographie bei Frühgeborenen and reifen Neugeborenen. Möglichkeiten and Grenzen. Radiologe 32: 340–346PubMedGoogle Scholar
  2. [2]
    Bazopoulos EV, Prassopoulos PK, Damilakis JE, Rais-saki MT, Megremis SD, Gourtsoyiannis NC (1998) A comparison between digital fluoroscopic hard copies and 105-mm spot films in evaluating vesicoureteric reflux in children. Pediatr Radiol 28: 162–166PubMedCrossRefGoogle Scholar
  3. [3]
    Braunschweig R, Klose HJ, Neugebauer E, Busch HP (1997) Digital radiography. Results of a survey and consensus conference. Er Radio 7 (Suppl 3): 94–101CrossRefGoogle Scholar
  4. [4]
    Brill PW, Winchester P, Cahill P, Lesser M, Durfee SM, Giess CS, Auld PAM, Greenwald B (1996) Computed radiography in neonatal and pediatric intensive care units: a comparison of 2.5K × 2K soft-copy images vs. digital hard-copy film. Pediat Radio) 26: 333–336CrossRefGoogle Scholar
  5. [5]
    Broderick NJ, Long B, Dreesen RG, Cohen MD, Cory DA, Katz BP, Kalasinski LA (1993) Phosphor plate computed radiography: response to variation in mAS at fixed kVP in an animal model. Potential role in neonatal imaging. Clin Radiol 47: 39–45Google Scholar
  6. [6]
    Cleveland RH, Constantinou C, Blickman JG, Jaramillo D, Webster E (1992) Voiding Cystourethrography in Children: Value of Digital Fluoroscopy in Reducing Radiation Dose. AJR 152: 137–142Google Scholar
  7. [7]
    Cohen MD, Katz BP, Kalasinski LA, White SJ, Smith JA, Long B (1991) Digital imaging with a photostimulable phosphor in the chest of newborns. Radiology 181: 829–832PubMedGoogle Scholar
  8. [8]
    Dobbins JT Ill, Ergun DL, Rutz L, Hinshaw DA, Blume H, Clark DC (1995) DQE(f) of four generations of computed radiography acquisition devices. Med Phys 22: 1581–1593PubMedCrossRefGoogle Scholar
  9. [9]
    Don S, Hildebolt CF, Sharp TL, Shackelford GD, Lau DM, Herman TE, Mc Alister WH (1999) Computed radiography versus screen-film radiography: detection of pulmonary edema in a rabbit model that simulates neonatal pulmonary infiltrates. Radiology 213: 455–460PubMedGoogle Scholar
  10. [10]
    Durand C, Baudain P, Francois P, Kandelman M (1995) Indications for digital fluorography and storage-phosphor plates in pediatrics: certainties and questionable points. J Digit Imaging 8: 89–91PubMedCrossRefGoogle Scholar
  11. [11]
    Fajardo LL, Hillman BJ, Hunter TB, Claypool HR, Westerman BR, Mockbee B (1987) Excretory urography using computed radiography. Radiology 162: 345–351PubMedGoogle Scholar
  12. [12]
    Franken EA Jr, Berbaum KS, Marley SM, Smith WL, Sato Y, Kao SC, Milam SG (1992) Evaluation of a digital workstation for interpreting neonatal examinations. A receiver operating characteristic study. Invest Radiol 27: 732–737Google Scholar
  13. [13]
    Hernandez RJ, Goodsitt MM (1996) Reduction of radiation dose in pediatric patients using pulsed fluoroscopy. AJR 167: 1247–1253PubMedCrossRefGoogle Scholar
  14. [14]
    Hillen W, Schiebel U, Zaengel T (1987) Imaging performance of a digital storage phosphor system. Med Phys 14: 744–751PubMedCrossRefGoogle Scholar
  15. [15]
    Huda W, Slone RM, Belden CJ, Williams JL, Cumming WA, Palmer CK (1996) Mottle on computed radiographs of the chest in pediatric patients. Radiology 199: 249–252PubMedGoogle Scholar
  16. [16]
    Hufton AP, Doyle SM, Carty HM (1998) Digital radiography in paediatrics: radiation dose considerations and magnitude of possible dose reduction. Br J Radio) 71: 186–199Google Scholar
  17. [17]
    Kalifa G, Charpak Y, Maccia C, Fery-Lemonnier E, Bloch J, Boussard J-M, Attal M, Dübosset J, Adamsbaum C (1998) Evaluation of a new two-dose digital X-ray device: first dosimetric and clinical results in children. Pediatr Radiol 28: 557–561PubMedCrossRefGoogle Scholar
  18. [18]
    Kling TF Jr, Cohen MJ, Lindseth RE, De Rosa GP (1990) Digital radiography can reduce scoliiosis X-ray exposure. Spine 15: 880–885PubMedCrossRefGoogle Scholar
  19. [19]
    Kogutt MS, Jones JP, Perkins DD (1988) Low-dose digital computed radiography in pediatric chest imaging. AJR 151: 775–779PubMedCrossRefGoogle Scholar
  20. [20]
    Kogutt MS, Warren FH, Kalmar JA (1989) Low dose imaging of scoliosis: use of a computed radiographic imaging system. Pediatr Radio) 20: 85–86CrossRefGoogle Scholar
  21. [21]
    Kottamasu SR, Kuhns LR, Stringer DA (1997) Pediatric musculoskeletal computed radiography. Pediatr Radiol 27: 563–575PubMedCrossRefGoogle Scholar
  22. [22]
    Langen HJ, Klein HM, Wein B, Schiwy-Bochat KH, Stargardt A, Günther RW (1993) Digital radiography versus conventional radiography for the detection of a skull fracture under varying exposure parameters. Invest Radiol 28: 231–234PubMedCrossRefGoogle Scholar
  23. [23]
    Merlo L, Bighi S, Cervi PM, Lupi L (1991) Computed radiography in neonatal intensive care. Pediatr Radiol 21: 94–96PubMedCrossRefGoogle Scholar
  24. [24]
    Murphey MD, Bramble JM, Cook LT, Martin NL, Dwyer SJ III (1990) Nondisplaced Fractures: Spatial Resolution Requirements for Detection with Digital Skeletal Imaging. Radiol 174: 865–870Google Scholar
  25. [25]
    Murphey MD, Quale JL, Martin NL, Bramble JM, Cook LT, Dwyer SJ III (1992) Computed radiography in musculoskeletal imaging: state of the art. AJR 158: 19–27PubMedCrossRefGoogle Scholar
  26. [26]
    Murphey MD (1997) Computed radiography in musculoskeletal imaging. Semin Roentgenol 32: 64–76PubMedCrossRefGoogle Scholar
  27. [27]
    Nakano Y, Odagiri K (1989) Use of computed radiography in respiratory distress syndrome in the neonatal nursery. Pediatr Radiol 19: 167–168PubMedCrossRefGoogle Scholar
  28. [28]
    Piraino DW, Davros WJ, Lieber M, Richmond BJ, Schils JP, Recht MP, Grooff PN, Belhobek GH (1999) Selenium-based digital radiography versus conventional film-screen radiography of the hands and feet: a subjective comparison. AJR 172: 177–184PubMedCrossRefGoogle Scholar
  29. [29]
    Razavi M, Sayre JW, Taira RK, Simons M, Huang HK, Chuang KS, Rahbar G, Kangarloo H (1992) Receiveroperating-characteristic study of chest radiographs in children: digital hard-copy film vs 2K x 2K soft-copy images. AJR 158: 443–448PubMedCrossRefGoogle Scholar
  30. [30]
    Reiner B, Siegel E, McLaurin T, Pomerantz S, Allman R, Hebel JR, Fritz S, Protopapas Z (1996) Evaluation of soft-tissue foreign bodies: comparing conventional plain film radiography, computed radiography printed on film, and computed radiography displayed on a computer workstation. AJR 167: 141–144PubMedCrossRefGoogle Scholar
  31. [31]
    Roehrig H, Krupinski EA, Hulett R (1997) Reduction of patient exposure in pediatric radiology. Acad Radiol 4: 547–557PubMedCrossRefGoogle Scholar
  32. [32]
    Schaefer-Prokop CM, Prokop M (1997) Storage phosphor radiography. Eur Radio 7 (Suppl 3): 58–65CrossRefGoogle Scholar
  33. [33]
    Schätzl M, Fink U (1995) Vergleich von Eingangs-grauwerten mit Kontrastprofilen — ein Beitrag zur Diskussion um die Optimierung der Auswerteparameter bei der Speicherfolienradiographie. Fortschr Röntgenstr 162: 157–162CrossRefGoogle Scholar
  34. [34]
    Seeley GW, Fisher HD, Stempski MO, Borgstrom M, Bjelland J, Cap MP (1987) Total digital radiology department: spatial resolution requirements. AJR 148: 421–426PubMedCrossRefGoogle Scholar
  35. [35]
    Seifert H, Kubale R, Hagen T, Kramann B, Leetz HK (1996) A study of dose reduction using digital luminescence radiography for lateral skull radiography. Br J Radio! 69: 311–317CrossRefGoogle Scholar
  36. [36]
    Shin JH, Oestmann J, Hall D, Cardenosa G, McCarthy KA, Mrose HE, Pile-Spellman E, Rubens JR, Greene RE (1989) Subtle gastric abnormalities in a canine model: detection with low-dose imaging with storage phosphors and its equivalence to conventional radiography. Radiology 172: 399–401PubMedGoogle Scholar
  37. [37]
    Strotzer M, Gmeinwieser J, Volk M, Frund R, Seitz J, Manke C, Albrich H, Feuerbach S (1998) Clinical application of a flat-panel X-ray detector based on amorphous silicon technology: image quality and potential for radiation dose reduction in skeletal radiography. AJR 171: 23–27PubMedCrossRefGoogle Scholar
  38. [38]
    Vosshenrich R, Weigel W, Fischer U, Funke M, Grabbe E (1992) Erfahrungen mit der digitalen Lumineszenzradiographie ( DLR) in der pädiatrischen Radiologie. Fortschr Röntgenstr 156: 107–111CrossRefGoogle Scholar
  39. [39]
    Wilson AJ, Mann FA, Murphy WA Jr, Monsees BS, Linn MR (1991) Photostimulable phosphor digital radiography of the extremities: diagnostic accuracy compared with conventional radiography. AJR 157: 533–538PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • K. Gindl
    • 1
  1. 1.Institute of RadiologyDanube Hospital of the SMZOViennaAustria

Personalised recommendations