Digital fluororadiography

  • G. Pärtan


One of the big steps forward in the evolution of X-ray fluoroscopy has been the invention of electronic image intensifiers, the first prototypes of which appeared 1948 [1]. In succession, the widespread use of electronic image intensifiers started in the mid-1950s, vastly facilitating image perception and also reducing the radiation dose load to patient and physician in comparison to the fluorescent screen systems used in these days.


Compute Radiography Digital Radiography Automatic Exposure Control Digital Radiology Digital Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Coltman JW (1948) Fluoroscopy image brightening by electronic means. Radiology 51: 359–367PubMedGoogle Scholar
  2. [2]
    Janker R (1956) Fernsehen in der Röntgendiagnostik. Röntgen-BI 9: 22Google Scholar
  3. [3]
    Stauffer H, Oppenheimer MJ, Stewart Ill GH, Blackstone AW (1955) Practical image amplifier technics, fluoroscopy, cinefluoroscopy, spot film radiography and use with closed circuit television. Radiology 65: 784Google Scholar
  4. [4]
    Ammann E, Rosenbusch G, Oudkerk M (1994) Durchleuchtung, Bildverstärkeraufnahme und digitales Bild. In: Rosenbusch G, Oudkerk M, Ammann E (eds) Ammann E, Rosenbusch G, Oudkerk M 1895–1995, Blackwell-Wiss BerlinGoogle Scholar
  5. [5]
    Schut TG, Oosterkamp WJ (1959) the application of electronic memories in radiology. Medica Mundi 5: 85–88Google Scholar
  6. [6]
    Jutras A (1964) Teleroentgen diagnosis by means of videotape recording. Am J Roentgenol 82: 1099–1102Google Scholar
  7. [7]
    Mistretta CA, Ort MG, Cameron JR et al (1973) A multiple images subtraction technique for enhancing low contrast, periodic objects. Invest Radiol 8: 43–49PubMedCrossRefGoogle Scholar
  8. [8]
    Brennecke R et al (1977) Computerized video-image processing with application to cardioangiographic Roentgen image series. In: Nagel HH (ed) Digital mage processing. Springer, Berlin New York Heidelberg, p 244Google Scholar
  9. [9]
    Kruger RA, Mistretta CA, Houk TL et al (1979) Computerized fluoroscopy in real time for noninvasive visualization of the cardiovascular system. Radiology 130: 49–57PubMedGoogle Scholar
  10. [10]
    Hübener KH (1983) Digitale Radiographie — Röntgendiagnostik der Zukunft?! Röntgenpraxis 36: 249267Google Scholar
  11. [11]
    Neufang KFR, Friedmann G, Peters PE et al (1982) Erste klinische Erfahrungen mit einem Großbildverstärker in der Thoraxdiagnostik. Fortschr Röntgenstr 137: 535–539CrossRefGoogle Scholar
  12. [12]
    Georgi M, Prager P, Busch HP et al (1985) Einjährige klinische Erfahungen mit einem 57 cm — Großbildverstärker in einem Universal-Röntgenarbeitsplatz. Fortschr Röntgenstr 142: 326–332CrossRefGoogle Scholar
  13. [13]
    Jester JR, Scanlon BE (1989) Fast informative, low in dose: the digital instant image. Initial clinical experience. Electromedica 56: 134–140Google Scholar
  14. [14]
    Templeton AW, Dwyer Ill SJ, Cox GC et al (1987) A digital radiology imaging system: description and clinical evaluation. Amer J Radiol 149: 847–851Google Scholar
  15. [15]
    Lehmann KJ, Busch HP, Georgi M (1993) Digital fluoroscopic radiology: evaluation of the clinical impact. Eur J Radiol 1 7: 3–7CrossRefGoogle Scholar
  16. [16]
    Kastan DJ, Ackerman LV, Feczko PJ (1987) Digital gastrointestinal imaging: the effect of pixel size on detection of subtle gastric abnormalities. Radiology 162: 853–856PubMedGoogle Scholar
  17. [17]
    Seeley GW, Fisher HD, Stempski MO, Borgstrom M, Bjelland J, Capp MP (1987) Total digital radiology department: spatial resolution requirements. Am J Radiol 148: 421–426Google Scholar
  18. [18]
    Murphey MD (1989) Digital skeletal radiography: spatial resolution requirements for detection of subperiostal resorption. Am J Roentgenol 152: 541–546CrossRefGoogle Scholar
  19. [19]
    Murphey MD, Bramble JM, Cook LT, Martin NL, Dwyer SJ (1990) Nondisplaced fractures: spatial resolution requirements for detection with digital skeletal imaging. Radiology 174: 865–870PubMedGoogle Scholar
  20. [20]
    Busch HP, Jaschke W, Wetzel E, Hampel J, Georgi M (1990) Vergleich von Speicherfolienradiographie, digitaler BV-Radiographie, Mittelformattechnik und konventionellen Film/Folienaufnahmen bei Lungenuntersuchungen. In: Schneider GH, Vogeler E, Kocever K (eds) Digitale Bildgebung, Interventionelle Radiologie, Integrierte digitale Radiologie. Blackwell Ueberreuter Wissenschafts-Verlag, Berlin, pp 174–178Google Scholar
  21. [21]
    Lehmann KJ, Busch HP, Sommer A, Georgi M (1992) Die Wertigkeit digitaler Skelettaufnahmeverfahren bei der Skelettdiagnostik. Fortschr Röntgenstr 154 (3): 286–291CrossRefGoogle Scholar
  22. [22]
    Levine MS, Laufer I (1998) The gastrointestinal tract: do’s and don’ts of digital imaging. Radiology 207: 311–316PubMedGoogle Scholar
  23. [23]
    Taylor AJ (1999) Impact of digital spot imaging in gastrointestinal fluoroscopy. Am J Roentgenol 173: 1065–1069CrossRefGoogle Scholar
  24. [24]
    Hart D, Wall BF (1995) Technical note: potentially higher patient radiation doses using digital equipment for barium studies. Brit J Radiol 68: 1112–1115PubMedCrossRefGoogle Scholar
  25. [25]
    Ruiz-Cruces R, Pérez-Martínez M, Martin-Palanca A et al (1997) Patient dose in radiologically guided interventional vascular procedures: conventional versus digital systems. Radiology 205: 385–393PubMedGoogle Scholar
  26. [26]
    Broadhead DA, Chapple CL, Faulkner K (1995) The impact of digital imaging on patient doses during barium studies. Br J Radiol 68: 992–996PubMedCrossRefGoogle Scholar
  27. [27]
    Barkhof F, David E, de Geest F (1996) Comparison of film-screen combination and digital fluorography in gastrointestinal barium examinations in a clinical setting. Eur J Radiol 22 (3): 232–235PubMedCrossRefGoogle Scholar
  28. [28]
    Chawla S, Levine MS, Laufer I, Gingold EL, Kelly TJ, Langlotz CP (1999) Gastrointestinal imaging: a sys-tems analysis comparing digital and conventional techniques. Am J Radiol 172: 1279–1284Google Scholar
  29. [29]
    Gelijns J, Broerse JJ, Chandie Shaw MP et al (1997) Patient dose due to colon examination: dose assessment and results from a survey in The Netherlands. Radiology 204: 553–559Google Scholar
  30. [30]
    Dorph S, Mygind T, Northeved A, Okholm B, Peters-wen KO, Oigard A (1970) A dose-reducing fluoroscopy system: dose measurements and clinical evaluation. Radiology 97: 399–403PubMedGoogle Scholar
  31. [31]
    Hermandez RJ, Goodsitt MM (1996) Reduction of radiation dose in pediatric patients using pulsed fluoroscopy. Am J Radiol 167: 1247–1253Google Scholar
  32. [32]
    Rudin S, Bednarek DR, Miller JA (1991) Dose reduction during fluoroscopic placement of feeding tubes. Radiology 178: 647–651PubMedGoogle Scholar
  33. [33]
    Nickoloff EL, Berman HL (1993) Factors affecting X-ray spectra. RadioGraphics 13: 1337–1348Google Scholar
  34. [34]
    Behrman RH, Yasuda G (1998) Effective dose in diagnostic radiology as a function of X-ray beam filtration for a constant exit dose and constant film density. Med Phys 25 (5): 780–790PubMedCrossRefGoogle Scholar
  35. [35]
    Pärtan G, Partik B, Mayrhofer R, Pichler L, Urban M, Gindl K, Hruby W (2000) Feasibility of 0.3 mm Cu additional beam filtration for digital gastrointestinal fluororadiography. Rad Prot Dosim (in print)Google Scholar
  36. [36]
    Hansson B, Finnbogason T, Schuwert P, Persliden J (1997) Added copper filtration in digital pediatric double contrast colon examinations: effects on radiation dose and image quality. Eur Radiol 7 (7): 11171122Google Scholar
  37. [37]
    Takahashi M, Ueno S, Tsuchigame T et al (1992) Gastrointestinal examinations with digital radiography. RadioGraphics 12: 969–978Google Scholar
  38. [38]
    Takahashi M, Ueno S, Tsuchigame T et al (1992) Development of a 2048 x 2048-pixel image intensi-fier-TV digital radiography system: basic imaging properties and clinical application. Invest Radiol 27: 898–907PubMedCrossRefGoogle Scholar
  39. [39]
    linuma G, Ushio K, Ishikawa T, Nawano S, Sekiguchi R, Satake M (2000) Diagnosis of gastric cancers: comparison of conventional radiography and digital radiography with a 4 million-pixel charge-coupled device. Radiology 214: 497–502Google Scholar
  40. [40]
    Antonuk LE, Jee KW, El-Mohri Y et al (2000) Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic X-ray applications. Med Phys 27 (2): 289–306PubMedCrossRefGoogle Scholar
  41. [41]
    Fink U (1991) Peripheral DSA with automated stepping. Eur Rad 13: 50CrossRefGoogle Scholar
  42. [42]
    Darcy MD (1991) lower extremity angiography: current approach and techniques. Radiology 178: 615Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • G. Pärtan
    • 1
  1. 1.Radiology DepartmentDanube HospitalViennaAustria

Personalised recommendations