Advertisement

Image fusion

  • W. Backfrieder
  • R. Hanel
  • M. Diemling
  • T. Lorang
  • J. Kettenbach
  • H. Imhof

Abstract

In modern radiology imaging modalities for three-dimensional medical visualisation of anatomy and function are in clinical use. Various physical quantities measured by the interaction of e.g. X-rays, magnetic fields or ultra sound with the human body provide modality inherent information about the human body, in general information is complimentary.

Keywords

Positron Emission Tomography Mutual Information Image Fusion Ultra Sound Compute Tomography Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Borgefors G (1988) Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Trans Pattern Anal Machine Intel) 10: 849–865CrossRefGoogle Scholar
  2. [2]
    Collins DL, Peters TM, Dai W, Evans AC (1992) Model based segmentation of individual brain structures from MRI data. SPIE Proceedings of 1st International Conference on visualisation in Biomedical Computing 1808: 10–23Google Scholar
  3. [3]
    Collins DL (1994) 3D Model-based segmentation of individual brain structures from magnetic resonance imaging data. PhD thesis, McGill UniversityGoogle Scholar
  4. [4]
    Dellepiane S, Fontana F (1995) Extraction of intensity connectedness for image processing. Pattern Recognition Letters 16: 313–324CrossRefGoogle Scholar
  5. [5]
    Gangolli AR, Tanimoto SL (1983) Two pyramid machine algorithms for edge detection in noisy binary images. Information Processing Letters 17: 197–202CrossRefGoogle Scholar
  6. [6]
    Gee JC, Reivich M, Bajcsy R (1993) Elastically deforming 3D atlas to match anatomical brain images. J Compt Assist Tomogr 17: 225–236CrossRefGoogle Scholar
  7. [7]
    Gibbs P, Buckley DL, Blackband SJ, Horsman A (1996) Tumour volume determination from MR images by morphological segmentation. Physics in Medicine and Biology 41: 2437–2446PubMedCrossRefGoogle Scholar
  8. [8]
    Hata N (1998) Rigid and deformable medical image registration for image-guided surgery. PhD thesis, University of TokyoGoogle Scholar
  9. [9]
    Hata N, Dohi T, Warfield S, Wells W, Kikinis R, Jolesz FA (1998) Multimodality deformable registration of pre-and intraoperative images for MRI guided brain surgery; http://splweb.bwh.harvard.edu:8000/pages/ papers/noby/m iccai 98/hatal 92. htmGoogle Scholar
  10. [10]
    Höhne KH, Hanson WA (1990) Interactive 3D-segmentation of MRI and CT volumes using morphological operators. J Compt Assist Tomogr 10: 41–53Google Scholar
  11. [11]
    Kaus M, Warfield S, Jolesz F, Kikinis R (1998) Adaptive template moderated brain tumor segmentation in MRI. Bildverarbeitung für die Medizin. Springer, pp 102–106Google Scholar
  12. [12]
    Levin D, Hu X, Tan KK, Galhotra S, Pelizzari CA et al (1989) The brain: Integrated three-dimensional display of MR and PET images. Radiology 172: 783–789Google Scholar
  13. [13]
    Maintz A, Viergever M (1998) A survey of medical image registration. Medical Image Analysis 2 (1): 136CrossRefGoogle Scholar
  14. [14]
    Mokhtarian, F Suomela R (1999) Curvature scale space for image point feature detection. Proceedings of the International Conference on Image Processing and its Applications, Manchester, UK 206–210Google Scholar
  15. [15]
    Nakajima S, Atsumi H, Kikinis R, Moriarty TM, Metcalf DC, Jolesz FA, Black P (1997) Use of cortical surface vessel registration for image-guided neurosurgery. Neurosurgery 40 (6): 1201–1210PubMedCrossRefGoogle Scholar
  16. [16]
    Pal N, Pal S (1993) A review on image segmentation techniques. Pattern Recognition 26: 1277–1294CrossRefGoogle Scholar
  17. [17]
    Robb RA (1995) Three-dimensional biomedical imaging: Principles and practice, VCH, pp 183–188Google Scholar
  18. [18]
    Serra J (1982) Image analysis and mathematical morphology. Academic PressGoogle Scholar
  19. [19]
    Soltanian-Zadeh H, Windham JP, Chen F (1994) Automated contour extraction using a multi-scale approach, Proceedings IEEE Medical Imaging Conference, Norfolk, VAGoogle Scholar
  20. [20]
    Specht DF (1990) Probabilistic neural networks. Neural Networks 3: 109–118CrossRefGoogle Scholar
  21. [21]
    Szekely G, Kelemen A, Brechbuhler C, Gerig G, (1996) Segmentation of 2d and 3d objects from MRI volume data using constrained elastic deformations of flexible Fourier contour and surface models. Medical Image Analysis 1 (1): 19–34PubMedGoogle Scholar
  22. [22]
    Vannier M, Butterfield R, Jordan D, Murphy W et al (1985) Multi-spectral analysis of magnetic resonance images. Radiology 154: 221–224PubMedGoogle Scholar
  23. [23]
    Viola PA (1995) Alignment by Maximization of mutual information. Artificial Intelligence Laboratory. Massachusetts Institute of Technology, PhD thesis, Cambridge, MA pp 155Google Scholar
  24. [24]
    Viola PA, Wells III WM (1995) Alignment by maximization of mutual information. Fifth International Conference on Computer Vision, IEEE, Cambridge, MA 16–23Google Scholar
  25. [25]
    Warfield SK (1998) Real-time image segmentation for image-guided surgery, http://splweb.bwh.harvard.edu:8000/pages/papers/warfield/sc98/index.html
  26. [26]
    Warfield S, Jolesz F, Kikinis R (1998) A high performance computing approach to the registration of medical imaging data. Parallel Computing 24: 11345–11368CrossRefGoogle Scholar
  27. [27]
    Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Medical Image Analysis 1: 35–51PubMedCrossRefGoogle Scholar
  28. [28]
    Wells Ill W, Kikinis R, Grimson W, Jolesz F (1996) Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging 15 (4): 429–442PubMedCrossRefGoogle Scholar
  29. [29]
    Westin C, Kikinis R (1998) Tensor controlled local structure enhancement of CT images for bone segmentation. Medical Image Computing and Computer Assisted Intervention (MICCAI) 1205–1212Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • W. Backfrieder
    • 1
  • R. Hanel
    • 2
  • M. Diemling
    • 1
    • 3
  • T. Lorang
    • 4
  • J. Kettenbach
    • 2
  • H. Imhof
    • 2
  1. 1.Department of Biomedical Engineering and PhysicsUniversity of ViennaAustria
  2. 2.Department of RadiologyVienna University HospitalAustria
  3. 3.Department of Nuclear Medicine, PET CentreVienna University HospitalAustria
  4. 4.Department of Medical Computer ScienceUniversity of ViennaAustria

Personalised recommendations