Serologic Characteristics on Phosphatidylinositol-Anchored Proteins

  • Helmut Schenkel-Brunner


Integral membrane proteins are usually bound to the cell membrane by a transmembrane segment of amino acids which is anchored in the membrane matrix by hydrophobic interactions with the lipid components of the bilayer (see Chapter 4.1.2). A number of membrane proteins, however, are linked to the membrane by a glycosylphosphatidylinositol (= GPI) unit [22,42]. This glycolipid anchor is composed of phosphatidylinositol, a short oligosaccharide chain, and phosphatidylethanolamine (Fig. 20.1); the glycolipid anchor is connected to the C-terminal amino acid of the protein via an amide bond. This complex molecule is attached to the cell membrane by the fatty acid residues of the phosphatidylinositol moiety which are embedded in the outer leaflet of the bilayer.


Blood Group Erythrocyte Membrane Paroxysmal Nocturnal Haemoglobinuria Blood Group Antigen Complement Regulatory Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong, C., Schubert, J., Ueda, E., Knez, J.J., Gelperin, D., Hirose, S., Silber, R., Hollan, S., Schmidt, R.E. & Medof, M.E. (1992): Affected paroxysmal nocturnal hemoglobinuria T lymphocytes harbor a common defect in assembly of N-acetyl-D-glucosamine inositol phospholipid corresponding to that in class A Thy-1–1 murine lymphoma mutants. J.Bio/. Chem. 267, 25347–25351.Google Scholar
  2. 2.
    Asch, A.S., Kinoshita, T., Jaffe, E.A. & Nussenzweig, V. (1986): Decay-accelerating factor is present on cultured human umbilical vein endothelial cells. J. Exp. Med. 163, 221–226.PubMedCrossRefGoogle Scholar
  3. 3.
    Banks, J.A., Parker, N. & Poole, J. (1992): Evidence to show that Dombrock (Do) antigens reside on the Gy /Hy glycoprotein. (Abstract). Transfus. Med. 2 (Suppl. 1), 68.Google Scholar
  4. 4.
    Bartels, C.F., Zelinski, T. & Lockridge, 0. (1993): Mutation at codon 322 in the human acetylcholinesterase (ACHE) gene accounts for YT blood group polymorphism. Am. J. Hum. Genet. 52, 928–936.PubMedGoogle Scholar
  5. 5.
    Bobolis, K.A., Moulds, J.J. & Telen, M.J. (1992): Isolation of the JMH antigen on a novel phosphatidylinositol-linked human membrane protein. Blood 79, 1574–1581.PubMedGoogle Scholar
  6. 6.
    Caras, I.W., Davitz, M.A., Rhee, G. Weddell, G.N., Martin, D.W. & Nussenzweig, V. (1987): Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 325, 545–549.Google Scholar
  7. 7.
    Daniels, G.L., Tohyama, H. & Uchikawa, M. (1982): A possible null phenotype in the Cromer blood group complex. Transfusion 22, 362–365.PubMedCrossRefGoogle Scholar
  8. 8.
    Daniels, G.L. & Knowles, R.W. (1982): A monoclonal antibody to the high frequency red cell antigen JMH. J. lmmunogenet. 9, 57–62.CrossRefGoogle Scholar
  9. 9.
    Daniels, G.L. & Knowles, R.W. (1983): Further analysis of the monoclonal antibody HB demonstrating a JMH-related specificity. J. /mmunogenet. 10, 257–265.CrossRefGoogle Scholar
  10. 10.
    Daniels, G.L. & Watthers, L. (1986): Anti-IFC, an antibody made by !nab phenotype individuals. Transfusion 26, 117–118.PubMedCrossRefGoogle Scholar
  11. 11.
    Daniels, G. (1989): Cromer-related antigens–blood group determinants on decay-accelerating factor. Vox Sang. 56, 205–211.PubMedCrossRefGoogle Scholar
  12. 12.
    Eaton, B.R., Morton, J.A., Pickles, M.M. & White, K.E. (1956): A new antibody, anti-Yt°, characterising a blood group antigen of high incidence. Brit. J. Haemtol. 2, 333–335.CrossRefGoogle Scholar
  13. 13.
    Getman, D.K., Eubanks, J.H., Camp, S., Evans, G.A. & Taylor, P. (1992): The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7. Amer. J. Hum. Genet. 51, 170–177.PubMedGoogle Scholar
  14. 14.
    Giles, C.M. & Metaxas, M.N. (1964): The identification of the predicted blood group antibody anti-Ytb. Nature 202, 1122–1123.PubMedCrossRefGoogle Scholar
  15. 15.
    Hereld, D., Krakow, J.L., Bangs, J.D., Hart, G.W. & Englund, P.T. (1986): A phospholipase C from Trypanosoma brucei which selectively cleaves the glycolipid on the variant surface glycoprotein. J. Biol. Chem. 261, 13813–13818.PubMedGoogle Scholar
  16. 16.
    Hillmen, P., Bessler, M., Mason, P.J., Watkins, W.M. & Luzzatto, L. (1993): Specific defect in N-acetylglucosamine incorporation in the biosynthesis of the glycosylphosphatidylinositol anchor in cloned cell lines from patients with paroxysmal nocturnal hemoglobinuria. Proc. Nati. Acad. Sci. USA 90, 5272–5276.CrossRefGoogle Scholar
  17. 17.
    lssitt, P.D. (1985): Applied Blood Group Serology. Montgomery Scientific Publications, Miami, FL, USA, 3rd edn., pp. 433–435.Google Scholar
  18. 18.
    Jensen, L., Scott, E.P., Marsh, W.L., Macllroy, M., Rosenfield, R.E., Brancato, P. & Fay, A.F. (1972): Anti-Joe: an antibody defining a high-frequency erythrocyte antigen. Transfusion 12, 322–324.PubMedCrossRefGoogle Scholar
  19. 19.
    Kinoshita, T., Medof, M.E., Silber, R. & Nussenzweig, V. (1985): Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J. Exp. Med. 162, 75–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Li, Y., Camp, S., Rachinsky, T.L., Getman, D. & Taylor, P. (1991): Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J. Biol. Chem. 266, 23083–23090.PubMedGoogle Scholar
  21. 21.
    Lin, R.C., Herman, J., Henny, L. & Daniels, G.L. (1988): A family showing inheritance of the ‘nab phenotype. Transfusion 28, 427–429.PubMedCrossRefGoogle Scholar
  22. 22.
    Low, M.G. (1989): Glycosyl-phosphoinositol: a versatile anchor for cell surface proteins. FASEB J. 3, 1600–1608.PubMedGoogle Scholar
  23. 23.
    Lublin, D.M., Krsek-Staples, J., Pangburn, M.K. & Atkinson, J.P. (1986): Biosynthesis and glycosylation of the human complement regulatory protein decay-accelerating factor. J. Immunol. 137, 1629–1635.PubMedGoogle Scholar
  24. 24.
    Lublin, D.M., Lemons, R.S., LeBeau, M., Holers, V.M., Tykocinski, M.L., Medof, M.E. & Atkinson, J.P. (1987): The gene encoding decay-accelerating factor (DAF) I located in the complement-regulatory locus on the long arm of chromosome 1. J. Exp. Med. 165, 1731–1736.PubMedCrossRefGoogle Scholar
  25. 25.
    Lublin, D.M. & Atkinson, J.P. (1989): Decay-accelerating factor: biochemistry, molecular biology, and function. Annu. Rev. Immunol. 7, 35–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Lublin, D.M., Thompson, E.S., Green, A.M., Levene, C. & Telen, M.J. (1991): Dr(a-) polymorphism of Decay Accelerating Factor. Biochemical, functional, an molecular characterization and production of allele-specific transfectants. J. Clin. Invest. 87, 1945–1952.PubMedCrossRefGoogle Scholar
  27. 27.
    Lublin, D.M., Mallinson, G., Poole, J., Reid, M.E., Thompson, E.S., Ferdman, B.R., Telen, M.J., Anstee, D.J. & Tanner, M.J.A. (1994): Molecular basis of reduced or absent expression of decay-accelerating factor in Cromer blood group phenotypes. Blood 84, 1276–1282.PubMedGoogle Scholar
  28. 28.
    Medof, M.E., Walter, E.I., Rutgers, J.L., Knowles, D.M. & Nussenzweig, V. (1987): Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J. Exp. Med. 165, 848–864.PubMedCrossRefGoogle Scholar
  29. 29.
    Medof, M.E., Lublin, D.M., Holers, V.M., Ayers, D.J., Getty, R.R., Leykam, J.F., Atkinson, J.P. & Tykocinski, M.L. (1987): Cloning and characterization of cDANs encoding the complete sequence of decay-accelerating factor of human complement. Proc. Nat/. Acad. Sci. USA 84, 2007–2011.CrossRefGoogle Scholar
  30. 30.
    Merry, A.H., Rawlinson, V.I., Uchikawa, M., Daha, M.R. & Sim, R.B. (1989): Studies on the sensitivity to complement-mediated lysis of erythrocytes (Inab phenotype) with a deficiency of DAF (decay accelerating factor). Brit. J. Haematol. 73, 248–253.CrossRefGoogle Scholar
  31. 31.
    Molthan, L., Crawford, M.N. & Tippett, P. (1973): Enlargement of the Dombrock blood group system: the finding of anti-Dob. Vox Sang. 24, 382–384.PubMedCrossRefGoogle Scholar
  32. 32.
    Moulds, J.J., Polesky, H.F., Reid, M.E. & Ellisor, S.S. (1975): Observations on the Gy° and Hy antigens and the antibodies that define them. Transfusion 15, 270–274.PubMedCrossRefGoogle Scholar
  33. 33.
    Nicholson-Weller, A., March, J.P., Rosen, C.E., Spicer, D.B. & Austen, K.F. (1985): Surface membrane expression by human blood leukocytes and platelets of decay-accelerating factor, a regulatory protein of the complement system. Blood 65, 1237–1244.PubMedGoogle Scholar
  34. 34.
    Ott, P. (1985): Membrane acetylcholinesterases. Purification, molecular properties, and interactions with amphiphilic environments. Biochim. Biophys. Acta 822, 375–384.PubMedCrossRefGoogle Scholar
  35. 35.
    Petty, A.C., Daniels, G.L., Anstee, D.J. & Tippett, P. (1993): Use of the MAIEA techique to confirm the relationship between the Cromer antigens and decay accelerating factor and to assign provisionally antigens to the short consensus repeats. Vox Sang. 65, 309–315.PubMedCrossRefGoogle Scholar
  36. 36.
    Post, T.W., Arce, M.A., Liszewski, M.K., Thompson, E.S., Atkinson, J.P. & Lublin, D.M. (1990): Structure of the gene for human complement proteins decay accelerating factor. J. Immunol. 144, 740 – 744.PubMedGoogle Scholar
  37. 37.
    Race, R.R. & Sanger, R. (1975): Blood Groups in Man. Blackwell Scientific Publications, Oxford, 6th edn., pp. 379–382.Google Scholar
  38. 38.
    Rao, N., Whitsett, C.F., Oxendine, S.M. & Telen, M.J. (1993): Human erythrocyte acetylcholinesterase bears the Yt° blood group antigen and is reduced or absent in the Yt(a-b-) phenotype. Blood 81, 815 – 819.PubMedGoogle Scholar
  39. 39.
    Reid, M.E., Mallinson, G., Sim, R.B., Poole, J., Pausch, V., Merry, A.H., Liew, Y.W. & Tanner, M.J.A. (1991): Biochemical studies on red blood cells from a patient with the Inab phenotype (decay-accelerating factor deficiency). Blood 78, 3291–3297.PubMedGoogle Scholar
  40. 40.
    Rey-Campos, J., Rubinstein, P. & Rodriguez de Cordoba, S. (1987): Decay-accelerating factor. Genetic polymorphism and linkage to the RCA (regulator of complement activation) gene cluster in humans. J. Exp. Med. >66, 246 – 252.Google Scholar
  41. 41.
    Roberts, W.L., Myher, J.J., Kuksis, A., Low, M.G. & Rosenberg, T.L. (1988): Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C. J. Biol. Chem. 263, 18766–18771.PubMedGoogle Scholar
  42. 42.
    Rosse, W.F. (1990): Phosphatidylinositol-linked proteins and paroxysmal nocturnal hemoglobinuria. Blood 75, 1595–1601.PubMedGoogle Scholar
  43. 43.
    Sabo, B., Moulds, J.J. & McCreary, J. (1978): Anti-JMH: another high titer - low avidity antibody against a high frequency antigen. Transfusion 18, 387 – 389.Google Scholar
  44. 44.
    Schmidt, R.P., Frank, S. & Baugh, M. (1967): New antibodies to high incidence antigenic determinants (anti-So, anti-El, anti-Hy, and anti-Dp) (Abstract). Transfusion 7, 386.CrossRefGoogle Scholar
  45. 45.
    Spring, F.A., Judson, P.A., Daniels, G.L., Parsons, S.F., Mallinson, G. & Anstee, D.J. (1987): A human cell-surface glycoprotein that carries Cromer-related blood group antigens on erythrocytes and is also expressed on leucocytes and platelets. Immunology 62, 307 – 314.PubMedGoogle Scholar
  46. 46.
    Spring, F.A. & Reid, M.E. (1991): Evidence that the human blood group antigens Gy° and Hy are carried on a novel glycosylphosphatidylinositol-linked erythrocyte membrane glycoprotein. Vox Sang. 60, 53 – 59.PubMedCrossRefGoogle Scholar
  47. 47.
    Spring, F.A., Gardner, B. & Anstee, D.J. (1992): Evidence that the antigens of the Yt blood group system are located on human erythrocyte acetylcholinesterase. Blood 80, 2136–2141.PubMedGoogle Scholar
  48. 48.
    Spring, F.A., Reid, M.E. & Nicholson, G. (1994): Evidence for expression of the Jo° blood group antigen on the Gy°/Hy-active glycoprotein. Vox Sang. 66, 72–77.PubMedCrossRefGoogle Scholar
  49. 49.
    Swanson, J.L., Polesky, H.F., Tippett, P. & Sanger, R. (1965): A ‘new’ blood group antigen, Do°. Nature 206, 313.CrossRefGoogle Scholar
  50. 50.
    Swanson, J., Zweber, M. & Polesky, H.F. (1967): A new public antigenic determinant Gy° (Gregory). Transfusion 7, 304–306.PubMedCrossRefGoogle Scholar
  51. 51.
    Takahashi, M., Takeda, J., Hirose, S., Hyman, R., Inoue, N., Miyata, T., Ueda, E., Kitani, T., Medof, M.E. & Kinoshita, T. (1993): Deficient biosynthesis of N-acetylglucosaminyl-phosphatidylinositol, the first intermediate of glycosyl phosphatidylinositol anchor biosynthesis, in cell lines established from patients with paroxysmal nocturnal hemoglobinuria. J. Exp. Med. 177, 517 – 521.PubMedCrossRefGoogle Scholar
  52. 52.
    Tate, C.G., Uchikawa, M., Tanner, M.J.A., Judson, P.A., Parsons, S.F., Mallinson, G. & Anstee, D.J. (1989): Studies on the defect which causes absence of decay accelerating factor (DAF) from the peripheral blood cells of an individual with the ‘nab phenotype. Biochem. J. 261, 489 – 493.PubMedGoogle Scholar
  53. 53.
    Telen, M.J., Hall, S.E., Green, A.M., Moulds, J.J. & Rosse, W.F. (1988): Identification of human erythrocyte blood group antigens on decay-accelerating factor (DAF) and an erythrocyte phenotype negative for DAF. J. Exp. Med. 167, 1993–1998.PubMedCrossRefGoogle Scholar
  54. 54.
    Telen, M.J. & Green, A.M. (1989): The Inab phenotype: characterization of the membrane protein and complement regulatory defect. Blood 74, 437 –441.PubMedGoogle Scholar
  55. 55.
    Telen, M.J., Rosse, W.F., Parker, C.J., Moulds, M.K. & Moulds, J.J. (1990): Evidence that several high frequency human blood group antigens reside on phosphatidylinositol-linked erythrocyte membrane proteins. Blood 75, 1404 – 1407.PubMedGoogle Scholar
  56. 56.
    Telen, M.J., Rao, N., Thompson, E.S. & Lublin, D.M. (1992): Mapping and characterisation of the CO epitope of decay accelerating factor. Transfusion Suppl. 32, 475 – 477.Google Scholar
  57. 57.
    Telen, M.J. & Whitsett, C.F. (1992): Erythrocyte acetylcholinesterase bears the Cartwright blood group antigens. Clin. Res. 40, 170–178.Google Scholar
  58. 58.
    Telen, M.J., Rao, N., Udani, M., Thompson, E.S., Kaufman, R.M. & Lublin, D.M. (1994): Molecular mapping of the Cromer blood group Cr’’ and Tc° epitopes of decay accelerating factor: toward the use of recombinant antigens in immunohematology. Blood 84, 3205–3211.PubMedGoogle Scholar
  59. 59.
    Walthers, L., Salem, M., Tessei, J., Laird-Fryer, B. & Moulds, J.J. (1983): The Inab phenotype: another example found (Abstract). Transfusion 23, 423.Google Scholar
  60. 60.
    Weaver, T., Kavitsky, D., Carty, L., Dah, L.K.E., Marchese, M., Harris, M., Draper, E. & Ballas, S.K. (1984): An association between the Jo. and Hy phenotypes. (Abstract). Transfusion 24, 426.Google Scholar
  61. 61.
    Zelinski, T., White, L., Goghlan, G & Philipps, S. (1991): Assignment of the Yt blood group locus to chromosome-7q. Genomics 11, 165 – 168.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • Helmut Schenkel-Brunner
    • 1
  1. 1.Institut für BiochemieUniversität WienViennaAustria

Personalised recommendations